N49.1′

Statistics

genus c49, non-orientable
Schläfli formula c{51,4}
V / F / E c 51 / 4 / 102
notesreplete cantankerous
vertex, face multiplicity c2, 17
Petrie polygons
4, each with 51 edges
rotational symmetry group408 elements.
full symmetry group408 elements.
its presentation c< r, s, t | t2, s4, (sr)2, (st)2, (rt)2, sr‑1s2rt, r‑51  >
C&D number cN49.1′
The statistics marked c are from the published work of Professor Marston Conder.

Relations to other Regular Maps

Its dual is N49.1.

It is self-Petrie dual.

It can be 2-split to give N100.2′.

List of regular maps in non-orientable genus 49.


Other Regular Maps

General Index