Q8 ≅ C2↑C22

Q8 (with elements {1,-1,i,-i,j,-j,k,-k}) has C2 (with elements {1-1}) as a normal subgroup. The quotient group is C22. Therefore Q8 is an extension of C2 by C22. This page shows how.

The elements of the normal subgroup N are {1,-1}. Call the elements of the quotient group H {1,p,q,r} so that pq=r, pr=q, qr=p. The extension is defined by a map from H×H to N. This map is specified by colouring the Cayley table of H like this:

*1pqr
11pqr
pp1rr
qqr1p
rrqp1

The pink cells of this table generate the element -1, which goes into the normal subgroup.

The correspondence between the combination {1,-1},{1,p,q,r} and the more familiar {1,-1,i,-i,j,-j,k,-k} is

1,11
-1,1-1
1,pi
-1,p-i
1,qj
-1,q-j
1,rk
-1,r-k


C2↑C22
This extension can be regarded as a toll-bean extension, as shown to the left.



This is a sub-page of Groups of order 8, regarded as Extensions
which describes various kinds of group extensions.

See also my main index page for groups.

Copyright N.S.Wedd 2008