Regular maps in the orientable surface of genus 0
Name | Schläfli | V / F / E | mV, mF | notes |
C&D no. | images | wire- frames |
the tetrahedron | {3,3}4 | 4 / 4 / 6 |
1,1 | | R0.1 | 1 | 0 |
the cube | {4,3}6 | 8 / 6 / 12 |
1,1 | | R0.2′ | 1 | 0 |
the octahedron | {3,4}6 | 6 / 8 / 12 |
1,1 | | R0.2 | 1 | 0 |
the dodecahedron | {5,3}10 | 20 / 12 / 30 |
1,1 | | R0.3′ | 1 | 0 |
the icosahedron | {3,5}10 | 12 / 20 / 30 |
1,1 | | R0.3 | 1 | 0 |
the monodigon | {2,1}2 | 2 / 1 / 1 |
1,2 | | R0.n1 | 1 | 0 |
the dimonogon | {1,2}2 | 1 / 2 / 1 |
2,1 | | R0.n1′ | 2 | 0 |
the 2-hosohedron | {2,2}2 | 2 / 2 / 2 |
2,2 | | R0.n2 | 2 | 4 |
the di-triangle | {3,2}6 | 3 / 2 / 3 |
1,3 | | R0.n3′ | 2 | 0 |
the 3-hosohedron | {2,3}6 | 2 / 3 / 3 |
3,1 | | R0.n3 | 2 | 0 |
the di-square | {4,2}4 | 4 / 2 / 4 |
1,4 | | R0.n4′ | 2 | 4 |
the 4-hosohedron | {2,4}4 | 2 / 4 / 4 |
4,1 | | R0.n4 | 4 | 4 |
the di-pentagon | {5,2}10 | 5 / 2 / 5 |
1,5 | | R0.n5′ | 1 | 0 |
the 5-hosohedron | {2,5}10 | 2 / 5 / 5 |
5,1 | | R0.n5 | 2 | 0 |
the di-hexagon | {6,2}6 | 6 / 2 / 6 |
1,6 | | R0.n6′ | 1 | 0 |
the 6-hosohedron | {2,6}6 | 2 / 6 / 6 |
6,1 | | R0.n6 | 2 | 0 |
the di-heptagon | {7,2}14 | 7 / 2 / 7 |
1,7 | | R0.n7′ | 1 | 0 |
the 7-hosohedron | {2,7}14 | 2 / 7 / 7 |
7,1 | | R0.n7 | 2 | 0 |
the di-octagon | {8,2}8 | 8 / 2 / 8 |
1,8 | | R0.n8′ | 1 | 0 |
the 8-hosohedron | {2,8}8 | 2 / 8 / 8 |
8,1 | | R0.n8 | 2 | 0 |
the di-nonagon | {9,2}18 | 9 / 2 / 9 |
1,9 | | R0.n9′ | 1 | 0 |
the 9-hosohedron | {2,9}18 | 2 / 9 / 9 |
9,1 | | R0.n9 | 2 | 0 |
the di-decagon | {10,2}10 | 10 / 2 / 10 |
1,10 | | R0.n10′ | 1 | 0 |
the 10-hosohedron | {2,10}10 | 2 / 10 / 10 |
10,1 | | R0.n10 | 2 | 0 |
the di-11-gon | {11,2}22 | 11 / 2 / 11 |
1,11 | | R0.n11′ | 1 | 0 |
the 11-hosohedron | {2,11}22 | 2 / 11 / 11 |
11,1 | | R0.n11 | 2 | 0 |
the di-dodecagon | {12,2}12 | 12 / 2 / 12 |
1,12 | | R0.n12′ | 1 | 0 |
the 12-hosohedron | {2,12}12 | 2 / 12 / 12 |
12,1 | | R0.n12 | 2 | 0 |
the di-13gon | {13,2}26 | 13 / 2 / 13 |
1,13 | | R0.n13′ | 1 | 0 |
the 13-hosohedron | {2,13}26 | 2 / 13 / 13 |
13,1 | | R0.n13 | 2 | 0 |
the di-14gon | {14,2}14 | 14 / 2 / 14 |
1,14 | | R0.n14′ | 1 | 0 |
the 14-hosohedron | {2,14}14 | 2 / 14 / 14 |
14,1 | | R0.n14 | 2 | 0 |
the edgeless map | {0,0} | 1 / 1 / 0 |
0,0 | | R0.0 | 1 | 0 |
Other Regular Maps
General Index