Regular maps in the orientable surface of genus 10

NameSchläfliV / F / EmV, mFnotes C&D no.imageswire-
frames
C10.1{3,8}1254 / 144 / 216 1,1 singular replete Chiral C10.100
C10.1′{8,3}12144 / 54 / 216 1,1 singular replete Chiral C10.1′00
R10.6{4,5}872 / 90 / 180 1,1 replete singular R10.600
R10.6′{5,4}890 / 72 / 180 1,1 replete singular R10.6′00
R10.1{3,9}1236 / 108 / 162 1,1 replete singular R10.100
R10.1′{9,3}12108 / 36 / 162 1,1 replete singular R10.1′00
R10.7{4,6}1236 / 54 / 108 1,1 replete singular R10.700
R10.7′{6,4}1254 / 36 / 108 1,1 replete singular R10.7′00
R10.8{4,6}1236 / 54 / 108 1,1 replete singular R10.800
R10.8′{6,4}1254 / 36 / 108 1,1 replete singular R10.8′00
R10.2{3,12}618 / 72 / 108 1,1 replete singular R10.200
R10.2′{12,3}672 / 18 / 108 1,1 replete singular R10.2′00
R10.3{3,15}1012 / 60 / 90 3,1 replete R10.300
R10.3′{15,3}1060 / 12 / 90 1,3 replete R10.3′00
R10.9{4,7}824 / 42 / 84 1,1 replete singular R10.900
R10.9′{7,4}842 / 24 / 84 1,1 replete singular R10.9′00
R10.4{3,18}69 / 54 / 81 3,1 replete R10.400
R10.4′{18,3}654 / 9 / 81 1,3 replete R10.4′00
C10.2{4,8}818 / 36 / 72 1,1 singular replete Chiral C10.200
C10.2′{8,4}836 / 18 / 72 1,1 singular replete Chiral C10.2′00
R10.5{3,24}126 / 48 / 72 6,1 replete R10.500
R10.5′{24,3}1248 / 6 / 72 1,6 replete R10.5′00
R10.13{6,6}618 / 18 / 54 1,1 replete singular R10.1300
R10.14{6,6}618 / 18 / 54 1,1 replete singular R10.1400
R10.15{6,6}618 / 18 / 54 2,1 replete R10.1500
R10.15′{6,6}618 / 18 / 54 1,2 replete R10.15′00
R10.10{4,12}69 / 27 / 54 3,1 replete R10.1000
R10.10′{12,4}627 / 9 / 54 1,3 replete R10.10′00
R10.11{4,22}444 / 22 / 44 11,2series m replete R10.11(see series m) 2
R10.11′{22,4}4422 / 4 / 44 2,11series l replete R10.11′1 2
R10.12{4,40}402 / 20 / 40 40,2series h Faces share vertices with themselves R10.1220
R10.12′{40,4}4020 / 2 / 40 2,40series j Faces share vertices with themselves R10.12′10
C10.3{8,8}69 / 9 / 36 1,1 singular replete Chiral is not a polyhedral map C10.30 2
R10.16{6,12}126 / 12 / 36 6,1 replete is not a polyhedral map R10.1600
R10.16′{12,6}1212 / 6 / 36 1,6 replete is not a polyhedral map R10.16′00
R10.17{6,12}126 / 12 / 36 6,3 replete is not a polyhedral map R10.1700
R10.17′{12,6}1212 / 6 / 36 3,6 replete is not a polyhedral map R10.17′00
R10.18{6,12}126 / 12 / 36 4,3 replete is not a polyhedral map R10.1800
R10.18′{12,6}1212 / 6 / 36 3,4 replete is not a polyhedral map R10.18′00
S10:{6,30}{6,30}102 / 10 / 30 30,3series p Faces share vertices with themselves is not a polyhedral map R10.1910
S10:{30,6}{30,6}1010 / 2 / 30 3,30series q Faces share vertices with themselves is not a polyhedral map R10.19′10
R10.20{9,18}63 / 6 / 27 9,3 replete is not a polyhedral map R10.2010
R10.20′{18,9}66 / 3 / 27 3,9 replete is not a polyhedral map R10.20′00
R10.21{12,24}82 / 4 / 24 24,6 is not a polyhedral map R10.2110
R10.21′{24,12}84 / 2 / 24 6,24 is not a polyhedral map R10.21′00
R10.23{22,22}22 / 2 / 22 22,22series k trivial Faces share vertices with themselves is not a polyhedral map R10.231 1
R10.22{21,42}21 / 2 / 21 42,21series z trivial Faces share vertices with themselves Vertices share edges with themselves is not a polyhedral map R10.22(see series z)0
R10.22′{42,21}22 / 1 / 21 21,42series i trivial Faces share vertices with themselves Faces share edges with themselves is not a polyhedral map R10.22′10
R10.24{40,40}21 / 1 / 20 40,40series s trivial Faces share edges with themselves Faces share vertices with themselves Vertices share edges with themselves is not a polyhedral map R10.2410

Other Regular Maps

General Index