Regular maps in the orientable surface of genus 13

NameSchläfliV / F / EmV, mFnotes C&D no.imageswire-
frames
R13.1{3,10}3036 / 120 / 180 1,1 replete singular R13.100
R13.1′{10,3}30120 / 36 / 180 1,1 replete singular R13.1′00
R13.2{3,12}1224 / 96 / 144 1,1 replete singular R13.200
R13.2′{12,3}1296 / 24 / 144 1,1 replete singular R13.2′00
R13.9{6,6}1224 / 24 / 72 2,1 replete R13.900
R13.9′{6,6}1224 / 24 / 72 1,2 replete R13.9′00
R13.3{4,12}412 / 36 / 72 2,1λ replete R13.300
R13.3′{12,4}436 / 12 / 72 1,2λ' replete R13.3′(see ser λ')0
R13.4{4,16}168 / 32 / 64 4,1 replete R13.400
R13.4′{16,4}1632 / 8 / 64 1,4 replete R13.4′00
R13.5{4,16}168 / 32 / 64 4,1 replete R13.500
R13.5′{16,4}1632 / 8 / 64 1,4 replete R13.5′00
R13.8{5,10}612 / 24 / 60 2,1 replete R13.800
R13.8′{10,5}624 / 12 / 60 1,2 replete R13.8′00
R13.6{4,28}284 / 28 / 56 14,2θ replete R13.60 2
R13.6′{28,4}2828 / 4 / 56 2,14θ' replete R13.6′(see ser θ') 2
R13.7{4,52}262 / 26 / 52 52,2ζ'°' Faces share vertices with themselves R13.710
R13.7′{52,4}2626 / 2 / 52 2,52ζ'° Faces share vertices with themselves R13.7′(see ser ζ'°)0
R13.10{6,12}48 / 16 / 48 4,1 replete R13.1000
R13.10′{12,6}416 / 8 / 48 1,4 replete R13.10′00
R13.11{6,12}88 / 16 / 48 4,2 replete R13.1100
R13.11′{12,6}816 / 8 / 48 2,4 replete R13.11′00
R13.12{6,15}306 / 15 / 45 5,3 replete R13.1200
R13.12′{15,6}3015 / 6 / 45 3,5 replete R13.12′00
R13.13{6,39}262 / 13 / 39 39,3δ Faces share vertices with themselves is not a polyhedral map R13.1310
R13.13′{39,6}2613 / 2 / 39 3,39δ' Faces share vertices with themselves is not a polyhedral map R13.13′(see ser δ')0
R13.15{12,12}66 / 6 / 36 6,6 replete is not a polyhedral map R13.1500
R13.16{12,12}66 / 6 / 36 4,6 replete is not a polyhedral map R13.1600
R13.16′{12,12}66 / 6 / 36 6,4 replete is not a polyhedral map R13.16′00
R13.14{9,18}44 / 8 / 36 6,3 replete is not a polyhedral map R13.1400
R13.14′{18,9}48 / 4 / 36 3,6 replete is not a polyhedral map R13.14′00
R13.17{16,16}84 / 4 / 32 8,8 replete is not a polyhedral map R13.1700
R13.17′{16,16}84 / 4 / 32 8,8 replete is not a polyhedral map R13.17′00
R13.18{16,16}44 / 4 / 32 8,8 replete is not a polyhedral map R13.1800
R13.19{16,16}44 / 4 / 32 8,8 replete is not a polyhedral map R13.1900
R13.21{28,28}22 / 2 / 28 28,28γ trivial Faces share vertices with themselves is not a polyhedral map R13.211 1
R13.20{27,54}21 / 2 / 27 54,27α trivial Faces share vertices with themselves Vertices share edges with themselves is not a polyhedral map R13.2000
R13.20′{54,27}22 / 1 / 27 27,54α' trivial Faces share vertices with themselves Faces share edges with themselves is not a polyhedral map R13.20′10
R13.22{52,52}21 / 1 / 26 52,52β trivial Faces share edges with themselves Faces share vertices with themselves Vertices share edges with themselves is not a polyhedral map R13.2200

Other Regular Maps

General Index