Regular maps in the orientable surface of genus 14

NameSchläfliV / F / EmV, mFnotes C&D no.imageswire-
frames
R14.1{3,7}12156 / 364 / 546 1,1 replete singular R14.100
R14.1′{7,3}12364 / 156 / 546 1,1 replete singular R14.1′00
R14.2{3,7}26156 / 364 / 546 1,1 replete singular R14.200
R14.2′{7,3}26364 / 156 / 546 1,1 replete singular R14.2′00
R14.3{3,7}14156 / 364 / 546 1,1 replete singular R14.300
R14.3′{7,3}14364 / 156 / 546 1,1 replete singular R14.3′00
C14.1{6,6}2626 / 26 / 78 2,1 replete Chiral C14.100
C14.1′{6,6}2626 / 26 / 78 1,2 replete Chiral C14.1′00
R14.4{4,30}604 / 30 / 60 15,2ζ replete is not a polyhedral map R14.400
R14.4′{30,4}6030 / 4 / 60 2,15ζ' replete is not a polyhedral map R14.4′(see ser ζ')0
R14.5{4,56}562 / 28 / 56 56,2η Faces share vertices with themselves is not a polyhedral map R14.510
R14.5′{56,4}5628 / 2 / 56 2,56η' Faces share vertices with themselves is not a polyhedral map R14.5′10
R14.6{6,16}486 / 16 / 48 8,3ε'° replete is not a polyhedral map R14.6(see ser ε'°)0
R14.6′{16,6}4816 / 6 / 48 3,8ε'° replete is not a polyhedral map R14.6′(see ser ε'°)0
R14.7{6,42}142 / 14 / 42 42,3ε Faces share vertices with themselves is not a polyhedral map R14.710
R14.7′{42,6}1414 / 2 / 42 3,42ε' Faces share vertices with themselves is not a polyhedral map R14.7′(see ser ε')0
R14.8{8,20}404 / 10 / 40 10,4 replete is not a polyhedral map R14.800
R14.8′{20,8}4010 / 4 / 40 4,10 replete is not a polyhedral map R14.8′00
R14.9{10,35}142 / 7 / 35 35,5 is not a polyhedral map R14.910
R14.9′{35,10}147 / 2 / 35 5,35 is not a polyhedral map R14.9′00
R14.11{30,30}22 / 2 / 30 30,30γ trivial Faces share vertices with themselves is not a polyhedral map R14.1110
R14.10{29,58}21 / 2 / 29 58,29α trivial Faces share vertices with themselves Vertices share edges with themselves is not a polyhedral map R14.1000
R14.10′{58,29}22 / 1 / 29 29,58α' trivial Faces share vertices with themselves Faces share edges with themselves is not a polyhedral map R14.10′10
R14.12{56,56}21 / 1 / 28 56,56β trivial Faces share edges with themselves Faces share vertices with themselves Vertices share edges with themselves is not a polyhedral map R14.1210

Other Regular Maps

General Index