Regular maps in the orientable surface of genus 19

NameSchläfliV / F / EmV, mFnotes C&D no.imageswire-
frames
R19.3{4,5}8144 / 180 / 360 1,1 replete singular R19.300
R19.3′{5,4}8180 / 144 / 360 1,1 replete singular R19.3′00
R19.1{3,12}2436 / 144 / 216 2,1 replete R19.100
R19.1′{12,3}24144 / 36 / 216 1,2 replete R19.1′00
R19.13{5,5}1072 / 72 / 180 1,1 replete singular R19.1300
R19.4{4,7}848 / 84 / 168 1,1 replete singular R19.400
R19.4′{7,4}884 / 48 / 168 1,1 replete singular R19.4′00
C19.1{4,8}836 / 72 / 144 1,1 replete singular Chiral C19.100
C19.1′{8,4}872 / 36 / 144 1,1 replete singular Chiral C19.1′00
R19.5{4,8}2436 / 72 / 144 2,1 replete R19.500
R19.5′{8,4}2472 / 36 / 144 1,2 replete R19.5′00
R19.6{4,8}2436 / 72 / 144 2,1 replete R19.600
R19.6′{8,4}2472 / 36 / 144 1,2 replete R19.6′00
R19.2{3,24}612 / 96 / 144 3,1 replete R19.200
R19.2′{24,3}696 / 12 / 144 1,3 replete R19.2′00
R19.7{4,10}624 / 60 / 120 2,1 replete R19.700
R19.7′{10,4}660 / 24 / 120 1,2 replete R19.7′00
R19.8{4,12}618 / 54 / 108 3,1 replete R19.800
R19.8′{12,4}654 / 18 / 108 1,3 replete R19.8′00
R19.9{4,12}618 / 54 / 108 3,1 replete R19.900
R19.9′{12,4}654 / 18 / 108 1,3 replete R19.9′00
R19.23{7,7}624 / 24 / 84 1,1 replete singular R19.2300
R19.14{6,9}1818 / 27 / 81 3,1 replete R19.1400
R19.14′{9,6}1827 / 18 / 81 1,3 replete R19.14′00
R19.15{6,9}618 / 27 / 81 3,1 replete R19.1500
R19.15′{9,6}627 / 18 / 81 1,3 replete R19.15′00
R19.16{6,9}1818 / 27 / 81 3,1 replete R19.1600
R19.16′{9,6}1827 / 18 / 81 1,3 replete R19.16′00
R19.17{6,9}618 / 27 / 81 3,1 replete R19.1700
R19.17′{9,6}627 / 18 / 81 1,3 replete R19.17′00
R19.10{4,40}404 / 40 / 80 20,2series m replete R19.10(see series m)0
R19.10′{40,4}4040 / 4 / 80 2,20series l replete R19.10′(see series l)0
R19.11{4,40}404 / 40 / 80 20,1series mt replete R19.1100
R19.11′{40,4}4040 / 4 / 80 1,20series lt replete R19.11′00
R19.12{4,76}382 / 38 / 76 76,2series h Faces share vertices with themselves R19.12(see series h)0
R19.12′{76,4}3838 / 2 / 76 2,76series j Faces share vertices with themselves R19.12′(see series j)0
C19.2{8,8}618 / 18 / 72 1,1 replete singular Chiral C19.20 2
R19.24{8,8}1218 / 18 / 72 2,2 replete R19.2400
R19.25{8,8}618 / 18 / 72 2,2 replete R19.2500
R19.18{6,12}612 / 24 / 72 3,2 replete R19.1800
R19.18′{12,6}624 / 12 / 72 2,3 replete R19.18′00
R19.19{6,12}612 / 24 / 72 3,1 replete R19.1900
R19.19′{12,6}624 / 12 / 72 1,3 replete R19.19′00
R19.20{6,12}2412 / 24 / 72 2,2 replete R19.2000
R19.20′{12,6}2424 / 12 / 72 2,2 replete R19.20′00
R19.21{6,21}426 / 21 / 63 7,3 replete R19.2100
R19.21′{21,6}4221 / 6 / 63 3,7 replete R19.21′00
R19.26{10,10}612 / 12 / 60 2,2 replete R19.2600
R19.22{6,57}382 / 19 / 57 57,3series p Faces share vertices with themselves R19.22(see series p)0
R19.22′{57,6}3819 / 2 / 57 3,57series q Faces share vertices with themselves R19.22′(see series q)0
R19.27{12,12}69 / 9 / 54 3,3 replete R19.2700
R19.28{12,12}69 / 9 / 54 3,3 replete R19.2800
R19.29{12,24}84 / 8 / 48 12,6 replete R19.2900
R19.29′{24,12}88 / 4 / 48 6,12 replete R19.29′00
R19.30{12,24}84 / 8 / 48 12,3 replete R19.3000
R19.30′{24,12}88 / 4 / 48 3,12 replete R19.30′00
R19.31{15,30}63 / 6 / 45 15,5 replete R19.3110
R19.31′{30,15}66 / 3 / 45 5,15 replete R19.31′00
R19.33{40,40}42 / 2 / 40 40,40series kt R19.3310
R19.34{40,40}22 / 2 / 40 40,40series k trivial R19.3410
R19.32{39,78}21 / 2 / 39 78,39series z trivial Faces share vertices with themselves Vertices share edges with themselves R19.32(see series z)0
R19.32′{78,39}22 / 1 / 39 39,78series i trivial Faces share vertices with themselves Faces share edges with themselves R19.32′10
R19.35{76,76}21 / 1 / 38 76,76series s trivial Faces share edges with themselves Faces share vertices with themselves Vertices share edges with themselves R19.35(see series s)0

Other Regular Maps

General Index