Regular maps in the orientable surface of genus 22

NameSchläfliV / F / EmV, mFnotes C&D no.imageswire-
frames
R22.1{3,8}42126 / 336 / 504 1,1 replete singular R22.100
R22.1′{8,3}42336 / 126 / 504 1,1 replete singular R22.1′00
R22.2{3,8}24126 / 336 / 504 1,1 replete singular R22.200
R22.2′{8,3}24336 / 126 / 504 1,1 replete singular R22.2′00
C22.1{3,12}4242 / 168 / 252 1,1 replete singular Chiral C22.100
C22.1′{12,3}42168 / 42 / 252 1,1 replete singular Chiral C22.1′00
R22.3{4,8}1442 / 84 / 168 1,1 replete singular R22.300
R22.3′{8,4}1484 / 42 / 168 1,1 replete singular R22.3′00
R22.4{4,8}642 / 84 / 168 1,1 replete singular R22.400
R22.4′{8,4}684 / 42 / 168 1,1 replete singular R22.4′00
C22.2{6,6}4242 / 42 / 126 1,1 replete singular Chiral C22.200
C22.2′{6,6}4242 / 42 / 126 1,1 replete singular Chiral C22.2′00
C22.3{6,6}4242 / 42 / 126 1,2 replete Chiral C22.300
C22.3′{6,6}4242 / 42 / 126 2,1 replete Chiral C22.3′00
R22.7{5,8}630 / 48 / 120 2,1 replete R22.700
R22.7′{8,5}648 / 30 / 120 1,2 replete R22.7′00
R22.5{4,46}924 / 46 / 92 23,2series m replete R22.5(see series m)0
R22.5′{46,4}9246 / 4 / 92 2,23series l replete R22.5′(see series l)0
R22.6{4,88}882 / 44 / 88 88,2series h Faces share vertices with themselves R22.6(see series h)0
R22.6′{88,4}8844 / 2 / 88 2,88series j Faces share vertices with themselves R22.6′(see series j)0
C22.4{6,12}2814 / 28 / 84 2,1 replete Chiral C22.400
C22.4′{12,6}2828 / 14 / 84 1,2 replete Chiral C22.4′00
C22.5{6,12}2814 / 28 / 84 4,1 replete Chiral C22.500
C22.5′{12,6}2828 / 14 / 84 1,4 replete Chiral C22.5′00
R22.13{8,12}812 / 18 / 72 2,2 replete R22.1300
R22.13′{12,8}818 / 12 / 72 2,2 replete R22.13′00
R22.10{6,24}246 / 24 / 72 8,3 replete R22.1000
R22.10′{24,6}2424 / 6 / 72 3,8 replete R22.10′00
R22.11{6,24}126 / 24 / 72 6,2 replete R22.1100
R22.11′{24,6}1224 / 6 / 72 2,6 replete R22.11′00
R22.8{6,24}246 / 24 / 72 12,3 replete R22.800
R22.8′{24,6}2424 / 6 / 72 3,12 replete R22.8′00
R22.9{6,24}246 / 24 / 72 12,1 replete R22.900
R22.9′{24,6}2424 / 6 / 72 1,12 replete R22.9′00
R22.12{6,66}222 / 22 / 66 66,3series p Faces share vertices with themselves R22.12(see series p)0
R22.12′{66,6}2222 / 2 / 66 3,66series q Faces share vertices with themselves R22.12′(see series q)0
C22.6{9,18}147 / 14 / 63 3,3 replete Chiral C22.600
C22.6′{18,9}1414 / 7 / 63 3,3 replete Chiral C22.6′00
R22.14{10,55}222 / 11 / 55 55,5 R22.1400
R22.14′{55,10}2211 / 2 / 55 5,55 R22.14′00
R22.15{18,18}66 / 6 / 54 9,6 replete R22.1500
R22.15′{18,18}66 / 6 / 54 6,9 replete R22.15′00
R22.17{46,46}22 / 2 / 46 46,46series k trivial Faces share vertices with themselves R22.1710
R22.16{45,90}21 / 2 / 45 90,45series z trivial Faces share vertices with themselves Vertices share edges with themselves R22.16(see series z)0
R22.16′{90,45}22 / 1 / 45 45,90series i trivial Faces share vertices with themselves Faces share edges with themselves R22.16′10
R22.18{88,88}21 / 1 / 44 88,88series s trivial Faces share edges with themselves Faces share vertices with themselves Vertices share edges with themselves R22.18(see series s)0

Other Regular Maps

General Index