Regular maps in the orientable surface of genus 25

NameSchläfliV / F / EmV, mFnotes C&D no.imageswire-
frames
R25.1{3,10}872 / 240 / 360 1,1 replete singular R25.100
R25.1′{10,3}8240 / 72 / 360 1,1 replete singular R25.1′00
R25.2{3,12}2448 / 192 / 288 2,1 replete R25.200
R25.2′{12,3}24192 / 48 / 288 1,2 replete R25.2′00
R25.3{3,12}2448 / 192 / 288 1,1 replete singular R25.300
R25.3′{12,3}24192 / 48 / 288 1,1 replete singular R25.3′00
R25.4{3,24}1616 / 128 / 192 4,1 replete R25.400
R25.4′{24,3}16128 / 16 / 192 1,4 replete R25.4′00
R25.5{3,30}1012 / 120 / 180 6,1 replete R25.500
R25.5′{30,3}10120 / 12 / 180 1,6 replete R25.5′00
R25.6{4,10}2032 / 80 / 160 2,1 replete R25.600
R25.6′{10,4}2080 / 32 / 160 1,2 replete R25.6′00
R25.7{4,10}1032 / 80 / 160 2,1 replete R25.700
R25.7′{10,4}1080 / 32 / 160 1,2 replete R25.7′00
R25.18{6,6}648 / 48 / 144 1,1 replete singular R25.1800
R25.18′{6,6}648 / 48 / 144 1,1 replete singular R25.18′00
R25.19{6,6}2448 / 48 / 144 1,1 replete singular R25.1900
R25.19′{6,6}2448 / 48 / 144 1,1 replete singular R25.19′00
R25.8{4,12}424 / 72 / 144 1,1μ replete singular R25.800
R25.8′{12,4}472 / 24 / 144 1,1μ' replete singular R25.8′(see ser μ')0
C25.1{4,16}816 / 64 / 128 2,1 replete Chiral C25.100
C25.1′{16,4}864 / 16 / 128 1,2 replete Chiral C25.1′00
R25.10{4,16}1616 / 64 / 128 4,1 replete R25.1000
R25.10′{16,4}1664 / 16 / 128 1,4 replete R25.10′00
R25.11{4,16}1616 / 64 / 128 4,1 replete R25.1100
R25.11′{16,4}1664 / 16 / 128 1,4 replete R25.11′00
R25.12{4,16}1616 / 64 / 128 4,1 replete R25.1200
R25.12′{16,4}1664 / 16 / 128 1,4 replete R25.12′00
R25.13{4,16}816 / 64 / 128 2,1 replete R25.1300
R25.13′{16,4}864 / 16 / 128 1,2 replete R25.13′00
R25.14{4,16}416 / 64 / 128 2,1λ replete R25.1400
R25.14′{16,4}464 / 16 / 128 1,2λ' replete R25.14′(see ser λ')0
R25.9{4,16}1616 / 64 / 128 4,1 replete R25.900
R25.9′{16,4}1664 / 16 / 128 1,4 replete R25.9′00
R25.15{4,28}288 / 56 / 112 7,1 replete R25.1500
R25.15′{28,4}2856 / 8 / 112 1,7 replete R25.15′00
C25.2{6,9}3624 / 36 / 108 3,1 replete Chiral C25.200
C25.2′{9,6}3636 / 24 / 108 1,3 replete Chiral C25.2′00
R25.20{6,9}3624 / 36 / 108 3,1 replete R25.2000
R25.20′{9,6}3636 / 24 / 108 1,3 replete R25.20′00
R25.16{4,52}524 / 52 / 104 26,2θ replete R25.1600
R25.16′{52,4}5252 / 4 / 104 2,26θ' replete R25.16′(see ser θ')0
R25.17{4,100}502 / 50 / 100 100,2ζ'°' Faces share vertices with themselves R25.1700
R25.17′{100,4}5050 / 2 / 100 2,100ζ'° Faces share vertices with themselves R25.17′(see ser ζ'°)0
R25.21{6,12}816 / 32 / 96 2,1 replete R25.2100
R25.21′{12,6}832 / 16 / 96 1,2 replete R25.21′00
R25.22{6,12}816 / 32 / 96 2,2 replete R25.2200
R25.22′{12,6}832 / 16 / 96 2,2 replete R25.22′00
R25.23{6,21}288 / 28 / 84 7,1 replete R25.2300
R25.23′{21,6}2828 / 8 / 84 1,7 replete R25.23′00
C25.3{6,27}546 / 27 / 81 9,1 replete Chiral C25.300
C25.3′{27,6}5427 / 6 / 81 1,9 replete Chiral C25.3′00
R25.24{6,27}546 / 27 / 81 9,3 replete R25.2400
R25.24′{27,6}5427 / 6 / 81 3,9 replete R25.24′00
R25.26{10,10}416 / 16 / 80 2,2 replete R25.2600
R25.27{10,10}816 / 16 / 80 2,2 replete R25.2700
R25.25{6,75}502 / 25 / 75 75,3δ Faces share vertices with themselves R25.2500
R25.25′{75,6}5025 / 2 / 75 3,75δ' Faces share vertices with themselves R25.25′(see ser δ')0
R25.28{12,12}1212 / 12 / 72 2,6 replete R25.2800
R25.28′{12,12}1212 / 12 / 72 6,2 replete R25.28′00
R25.29{12,12}1212 / 12 / 72 6,6 replete R25.2900
C25.4{16,16}88 / 8 / 64 4,4 replete Chiral C25.400
R25.32{16,16}88 / 8 / 64 4,8 replete R25.3200
R25.32′{16,16}88 / 8 / 64 8,4 replete R25.32′00
R25.33{16,16}88 / 8 / 64 4,8 replete R25.3300
R25.33′{16,16}88 / 8 / 64 8,4 replete R25.33′00
R25.34{16,16}88 / 8 / 64 8,8 replete R25.3400
R25.35{16,16}88 / 8 / 64 8,8 replete R25.3500
R25.36{16,16}48 / 8 / 64 4,4 replete R25.3600
R25.37{16,16}88 / 8 / 64 4,4 replete R25.3700
R25.38{16,16}48 / 8 / 64 4,4 replete R25.3800
R25.39{16,16}88 / 8 / 64 4,4 replete R25.3900
R25.31{15,30}44 / 8 / 60 10,5 replete R25.3100
R25.31′{30,15}48 / 4 / 60 5,10 replete R25.31′00
R25.30{12,60}102 / 10 / 60 60,6 R25.3000
R25.30′{60,12}1010 / 2 / 60 6,60 R25.30′00
R25.41{28,28}44 / 4 / 56 14,14θ° replete R25.4100
R25.40{22,55}102 / 5 / 55 55,11 R25.4000
R25.40′{55,22}105 / 2 / 55 11,55 R25.40′00
R25.43{52,52}22 / 2 / 52 52,52γ trivial Faces share vertices with themselves R25.4310
R25.42{51,102}21 / 2 / 51 102,51α trivial Faces share vertices with themselves Vertices share edges with themselves R25.4200
R25.42′{102,51}22 / 1 / 51 51,102α' trivial Faces share vertices with themselves Faces share edges with themselves R25.42′10
R25.44{100,100}21 / 1 / 50 100,100β trivial Faces share edges with themselves Faces share vertices with themselves Vertices share edges with themselves R25.4400

Other Regular Maps

General Index