Regular maps in the orientable surface of genus 31

NameSchläfliV / F / EmV, mFnotes C&D no.imageswire-
frames
R31.3{4,6}30120 / 180 / 360 1,1 replete singular R31.300
R31.3′{6,4}30180 / 120 / 360 1,1 replete singular R31.3′00
R31.1{3,21}824 / 168 / 252 3,1 replete R31.100
R31.1′{21,3}8168 / 24 / 252 1,3 replete R31.1′00
R31.2{3,30}615 / 150 / 225 3,1 replete R31.200
R31.2′{30,3}6150 / 15 / 225 1,3 replete R31.2′00
R31.12{6,6}660 / 60 / 180 1,1 replete singular R31.1200
R31.4{4,14}824 / 84 / 168 2,1 replete R31.400
R31.4′{14,4}884 / 24 / 168 1,2 replete R31.4′00
R31.5{4,14}824 / 84 / 168 2,1 replete R31.500
R31.5′{14,4}884 / 24 / 168 1,2 replete R31.5′00
C31.1{4,16}8020 / 80 / 160 4,1 replete Chiral C31.100
C31.1′{16,4}8080 / 20 / 160 1,4 replete Chiral C31.1′00
C31.2{4,16}8020 / 80 / 160 4,1 replete Chiral C31.200
C31.2′{16,4}8080 / 20 / 160 1,4 replete Chiral C31.2′00
R31.6{4,24}812 / 72 / 144 4,1 replete R31.600
R31.6′{24,4}872 / 12 / 144 1,4 replete R31.6′00
R31.7{4,24}812 / 72 / 144 4,1 replete R31.700
R31.7′{24,4}872 / 12 / 144 1,4 replete R31.7′00
C31.3{4,28}7010 / 70 / 140 7,1 replete Chiral C31.300
C31.3′{28,4}7070 / 10 / 140 1,7 replete Chiral C31.3′00
R31.8{4,64}644 / 64 / 128 32,2series m replete R31.8(see series m)0
R31.8′{64,4}6464 / 4 / 128 2,32series l replete R31.8′(see series l)0
R31.9{4,64}644 / 64 / 128 32,1series mt replete R31.900
R31.9′{64,4}6464 / 4 / 128 1,32series lt replete R31.9′00
R31.10{4,124}622 / 62 / 124 124,2series h Faces share vertices with themselves R31.10(see series h)0
R31.10′{124,4}6262 / 2 / 124 2,124series j Faces share vertices with themselves R31.10′(see series j)0
R31.11{5,20}1212 / 48 / 120 4,1 replete R31.1100
R31.11′{20,5}1248 / 12 / 120 1,4 replete R31.11′00
R31.13{6,33}666 / 33 / 99 11,3 replete R31.1300
R31.13′{33,6}6633 / 6 / 99 3,11 replete R31.13′00
R31.14{6,93}622 / 31 / 93 93,3series p Faces share vertices with themselves R31.14(see series p)0
R31.14′{93,6}6231 / 2 / 93 3,93series q Faces share vertices with themselves R31.14′(see series q)0
C31.4{16,16}1010 / 10 / 80 4,4 replete Chiral C31.400
C31.5{16,16}2010 / 10 / 80 4,4 replete Chiral C31.500
R31.15{15,30}105 / 10 / 75 15,3 replete R31.1500
R31.15′{30,15}1010 / 5 / 75 3,15 replete R31.15′00
R31.17{24,24}126 / 6 / 72 8,12 replete R31.1700
R31.17′{24,24}126 / 6 / 72 12,8 replete R31.17′00
R31.18{24,24}126 / 6 / 72 12,12 replete R31.1800
R31.19{24,24}66 / 6 / 72 12,12 replete R31.1900
R31.20{24,24}66 / 6 / 72 12,8 replete R31.2000
R31.20′{24,24}66 / 6 / 72 8,12 replete R31.20′00
R31.16{18,36}84 / 8 / 72 12,6 replete R31.1600
R31.16′{36,18}88 / 4 / 72 6,12 replete R31.16′00
C31.6{28,28}105 / 5 / 70 7,7 replete Chiral C31.600
R31.22{64,64}42 / 2 / 64 64,64series kt R31.2200
R31.23{64,64}22 / 2 / 64 64,64series k trivial R31.23(see series k)0
R31.21{63,126}21 / 2 / 63 126,63series z trivial Faces share vertices with themselves Vertices share edges with themselves R31.21(see series z)0
R31.21′{126,63}22 / 1 / 63 63,126series i trivial Faces share vertices with themselves Faces share edges with themselves R31.21′(see series i)0
R31.24{124,124}21 / 1 / 62 124,124series s trivial Faces share edges with themselves Faces share vertices with themselves Vertices share edges with themselves R31.24(see series s)0

Other Regular Maps

General Index