Regular maps in the orientable surface of genus 37

NameSchläfliV / F / EmV, mFnotes C&D no.imageswire-
frames
C37.1{3,8}12216 / 576 / 864 1,1 replete singular Chiral C37.100
C37.1′{8,3}12576 / 216 / 864 1,1 replete singular Chiral C37.1′00
R37.8{4,6}12144 / 216 / 432 1,1 replete singular R37.800
R37.8′{6,4}12216 / 144 / 432 1,1 replete singular R37.8′00
R37.1{3,12}1272 / 288 / 432 1,1 replete singular R37.100
R37.1′{12,3}12288 / 72 / 432 1,1 replete singular R37.1′00
R37.2{3,15}2048 / 240 / 360 1,1 replete singular R37.200
R37.2′{15,3}20240 / 48 / 360 1,1 replete singular R37.2′00
R37.3{3,18}1236 / 216 / 324 2,1 replete R37.300
R37.3′{18,3}12216 / 36 / 324 1,2 replete R37.3′00
R37.4{3,18}1236 / 216 / 324 3,1 replete R37.400
R37.4′{18,3}12216 / 36 / 324 1,3 replete R37.4′00
C37.2{4,8}872 / 144 / 288 1,1 replete singular Chiral C37.200
C37.2′{8,4}8144 / 72 / 288 1,1 replete singular Chiral C37.2′00
R37.10{4,8}672 / 144 / 288 1,1 replete singular R37.1000
R37.10′{8,4}6144 / 72 / 288 1,1 replete singular R37.10′00
R37.11{4,8}1272 / 144 / 288 2,1 replete R37.1100
R37.11′{8,4}12144 / 72 / 288 1,2 replete R37.11′00
R37.12{4,8}2472 / 144 / 288 2,1 replete R37.1200
R37.12′{8,4}24144 / 72 / 288 1,2 replete R37.12′00
R37.9{4,8}1272 / 144 / 288 1,1 replete singular R37.900
R37.9′{8,4}12144 / 72 / 288 1,1 replete singular R37.9′00
R37.5{3,24}1224 / 192 / 288 2,1 replete R37.500
R37.5′{24,3}12192 / 24 / 288 1,2 replete R37.5′00
R37.6{3,24}2424 / 192 / 288 2,1 replete R37.600
R37.6′{24,3}24192 / 24 / 288 1,2 replete R37.6′00
R37.7{3,24}1224 / 192 / 288 3,1 replete R37.700
R37.7′{24,3}12192 / 24 / 288 1,3 replete R37.7′00
R37.13{4,10}1248 / 120 / 240 1,1 replete singular R37.1300
R37.13′{10,4}12120 / 48 / 240 1,1 replete singular R37.13′00
R37.23{6,6}1272 / 72 / 216 1,1 replete singular R37.2300
R37.24{6,6}1272 / 72 / 216 2,1 replete R37.2400
R37.24′{6,6}1272 / 72 / 216 1,2 replete R37.24′00
R37.14{4,12}1236 / 108 / 216 3,1 replete R37.1400
R37.14′{12,4}12108 / 36 / 216 1,3 replete R37.14′00
R37.15{4,12}1236 / 108 / 216 3,1 replete R37.1500
R37.15′{12,4}12108 / 36 / 216 1,3 replete R37.15′00
R37.16{4,12}1236 / 108 / 216 2,1 replete R37.1600
R37.16′{12,4}12108 / 36 / 216 1,2 replete R37.16′00
R37.17{4,12}1236 / 108 / 216 2,1 replete R37.1700
R37.17′{12,4}12108 / 36 / 216 1,2 replete R37.17′00
R37.18{4,20}3018 / 90 / 180 5,1 replete R37.1800
R37.18′{20,4}3090 / 18 / 180 1,5 replete R37.18′00
R37.19{4,40}408 / 80 / 160 10,1 replete R37.1900
R37.19′{40,4}4080 / 8 / 160 1,10 replete R37.19′00
R37.20{4,40}208 / 80 / 160 10,1 replete R37.2000
R37.20′{40,4}2080 / 8 / 160 1,10 replete R37.20′00
R37.21{4,76}764 / 76 / 152 38,2series m replete R37.21(see series m)0
R37.21′{76,4}7676 / 4 / 152 2,38series l replete R37.21′(see series l)0
R37.22{4,148}742 / 74 / 148 148,2series h Faces share vertices with themselves R37.22(see series h)0
R37.22′{148,4}7474 / 2 / 148 2,148series j Faces share vertices with themselves R37.22′(see series j)0
C37.3{8,8}1236 / 36 / 144 1,1 replete singular Chiral C37.300
R37.35{8,8}1236 / 36 / 144 2,2 replete R37.3500
R37.36{8,8}1236 / 36 / 144 2,2 replete R37.3600
R37.25{6,12}2424 / 48 / 144 2,2 replete R37.2500
R37.25′{12,6}2448 / 24 / 144 2,2 replete R37.25′00
R37.26{6,12}1224 / 48 / 144 2,1 replete R37.2600
R37.26′{12,6}1248 / 24 / 144 1,2 replete R37.26′00
R37.27{6,12}1224 / 48 / 144 3,1 replete R37.2700
R37.27′{12,6}1248 / 24 / 144 1,3 replete R37.27′00
R37.28{6,12}2424 / 48 / 144 4,1 replete R37.2800
R37.28′{12,6}2448 / 24 / 144 1,4 replete R37.28′00
R37.29{6,12}1224 / 48 / 144 4,1 replete R37.2900
R37.29′{12,6}1248 / 24 / 144 1,4 replete R37.29′00
R37.30{6,12}1224 / 48 / 144 3,1 replete R37.3000
R37.30′{12,6}1248 / 24 / 144 1,3 replete R37.30′00
R37.31{6,15}3018 / 45 / 135 5,1 replete R37.3100
R37.31′{15,6}3045 / 18 / 135 1,5 replete R37.31′00
R37.38{10,10}624 / 24 / 120 2,2 replete R37.3800
R37.32{6,30}208 / 40 / 120 10,1 replete R37.3200
R37.32′{30,6}2040 / 8 / 120 1,10 replete R37.32′00
R37.33{6,39}786 / 39 / 117 13,3 replete R37.3300
R37.33′{39,6}7839 / 6 / 117 3,13 replete R37.33′00
R37.34{6,111}742 / 37 / 111 111,3series p Faces share vertices with themselves R37.34(see series p)0
R37.34′{111,6}7437 / 2 / 111 3,111series q Faces share vertices with themselves R37.34′(see series q)0
R37.39{12,12}618 / 18 / 108 3,3 replete R37.3900
R37.40{12,12}618 / 18 / 108 3,3 replete R37.4000
R37.41{12,12}618 / 18 / 108 4,2 replete R37.4100
R37.41′{12,12}618 / 18 / 108 2,4 replete R37.41′00
R37.42{12,12}618 / 18 / 108 2,2 replete R37.4200
R37.43{12,12}618 / 18 / 108 2,2 replete R37.4300
R37.37{9,18}1212 / 24 / 108 3,3 replete R37.3700
R37.37′{18,9}1224 / 12 / 108 3,3 replete R37.37′00
R37.44{12,24}88 / 16 / 96 8,2 replete R37.4400
R37.44′{24,12}816 / 8 / 96 2,8 replete R37.44′00
R37.45{12,24}48 / 16 / 96 8,2 replete R37.4500
R37.45′{24,12}416 / 8 / 96 2,8 replete R37.45′00
R37.46{12,24}88 / 16 / 96 6,3 replete R37.4600
R37.46′{24,12}816 / 8 / 96 3,6 replete R37.46′00
R37.47{12,24}48 / 16 / 96 6,3 replete R37.4700
R37.47′{24,12}416 / 8 / 96 3,6 replete R37.47′00
R37.48{20,20}69 / 9 / 90 5,5 replete R37.4800
R37.49{21,42}44 / 8 / 84 14,7 replete R37.4900
R37.49′{42,21}48 / 4 / 84 7,14 replete R37.49′00
R37.50{27,54}63 / 6 / 81 27,9 replete R37.5000
R37.50′{54,27}66 / 3 / 81 9,27 replete R37.50′00
R37.51{40,40}44 / 4 / 80 20,20 replete R37.5100
R37.52{40,40}44 / 4 / 80 20,20 replete R37.5200
R37.54{76,76}22 / 2 / 76 76,76series k trivial Faces share vertices with themselves R37.54(see series k)0
R37.53{75,150}21 / 2 / 75 150,75series z trivial Faces share vertices with themselves Vertices share edges with themselves R37.53(see series z)0
R37.53′{150,75}22 / 1 / 75 75,150series i trivial Faces share vertices with themselves Faces share edges with themselves R37.53′(see series i)0
R37.55{148,148}21 / 1 / 74 148,148series s trivial Faces share edges with themselves Faces share vertices with themselves Vertices share edges with themselves R37.55(see series s)0

Other Regular Maps

General Index