Regular maps in the orientable surface of genus 40

NameSchläfliV / F / EmV, mFnotes C&D no.imageswire-
frames
C40.1{3,12}7878 / 312 / 468 1,1 replete singular Chiral C40.100
C40.1′{12,3}78312 / 78 / 468 1,1 replete singular Chiral C40.1′00
C40.2{6,6}7878 / 78 / 234 1,1 replete singular Chiral C40.200
C40.2′{6,6}7878 / 78 / 234 1,1 replete singular Chiral C40.2′00
C40.3{6,6}7878 / 78 / 234 1,2 replete Chiral C40.300
C40.3′{6,6}7878 / 78 / 234 2,1 replete Chiral C40.3′00
R40.1{4,30}2012 / 90 / 180 5,1 replete R40.100
R40.1′{30,4}2090 / 12 / 180 1,5 replete R40.1′00
R40.10{7,8}642 / 48 / 168 1,1 replete singular R40.1000
R40.10′{8,7}648 / 42 / 168 1,1 replete singular R40.10′00
R40.9{7,8}442 / 48 / 168 1,1 replete singular R40.900
R40.9′{8,7}448 / 42 / 168 1,1 replete singular R40.9′00
R40.2{4,82}1644 / 82 / 164 41,2series m replete R40.2(see series m)0
R40.2′{82,4}16482 / 4 / 164 2,41series l replete R40.2′(see series l)0
R40.3{4,160}1602 / 80 / 160 160,2series h Faces share vertices with themselves R40.3(see series h)0
R40.3′{160,4}16080 / 2 / 160 2,160series j Faces share vertices with themselves R40.3′(see series j)0
C40.4{6,12}5226 / 52 / 156 2,1 replete Chiral C40.400
C40.4′{12,6}5252 / 26 / 156 1,2 replete Chiral C40.4′00
C40.5{6,12}5226 / 52 / 156 4,1 replete Chiral C40.500
C40.5′{12,6}5252 / 26 / 156 1,4 replete Chiral C40.5′00
R40.4{6,16}1618 / 48 / 144 4,1 replete R40.400
R40.4′{16,6}1648 / 18 / 144 1,4 replete R40.4′00
R40.5{6,42}426 / 42 / 126 21,1 replete R40.500
R40.5′{42,6}4242 / 6 / 126 1,21 replete R40.5′00
R40.6{6,42}426 / 42 / 126 21,3 replete R40.600
R40.6′{42,6}4242 / 6 / 126 3,21 replete R40.6′00
R40.7{6,42}426 / 42 / 126 14,3 replete R40.700
R40.7′{42,6}4242 / 6 / 126 3,14 replete R40.7′00
R40.8{6,120}402 / 40 / 120 120,3series p Faces share vertices with themselves R40.8(see series p)0
R40.8′{120,6}4040 / 2 / 120 3,120series q Faces share vertices with themselves R40.8′(see series q)0
C40.6{9,18}2613 / 26 / 117 3,3 replete Chiral C40.600
C40.6′{18,9}2626 / 13 / 117 3,3 replete Chiral C40.6′00
R40.12{10,22}11010 / 22 / 110 11,5 replete R40.1200
R40.12′{22,10}11022 / 10 / 110 5,11 replete R40.12′00
C40.7{12,18}3612 / 18 / 108 3,2 replete Chiral C40.700
C40.7′{18,12}3618 / 12 / 108 2,3 replete Chiral C40.7′00
R40.13{12,18}3612 / 18 / 108 3,6 replete R40.1300
R40.13′{18,12}3618 / 12 / 108 6,3 replete R40.13′00
R40.14{12,18}3612 / 18 / 108 9,6 replete R40.1400
R40.14′{18,12}3618 / 12 / 108 6,9 replete R40.14′00
R40.11{9,36}66 / 24 / 108 9,3 replete R40.1100
R40.11′{36,9}624 / 6 / 108 3,9 replete R40.11′00
R40.15{12,96}322 / 16 / 96 96,6 R40.1500
R40.15′{96,12}3216 / 2 / 96 6,96 R40.15′00
R40.18{30,30}66 / 6 / 90 15,15 replete R40.1800
R40.19{30,30}66 / 6 / 90 10,15 replete R40.1900
R40.19′{30,30}66 / 6 / 90 15,10 replete R40.19′00
R40.16{18,90}102 / 10 / 90 90,9 R40.1600
R40.16′{90,18}1010 / 2 / 90 9,90 R40.16′00
R40.17{22,88}82 / 8 / 88 88,11 R40.1700
R40.17′{88,22}88 / 2 / 88 11,88 R40.17′00
R40.20{34,85}102 / 5 / 85 85,17 R40.2000
R40.20′{85,34}105 / 2 / 85 17,85 R40.20′00
R40.21{42,84}42 / 4 / 84 84,21 R40.2100
R40.21′{84,42}44 / 2 / 84 21,84 R40.21′00
R40.23{82,82}22 / 2 / 82 82,82series k trivial Faces share vertices with themselves R40.23(see series k)0
R40.22{81,162}21 / 2 / 81 162,81series z trivial Faces share vertices with themselves Vertices share edges with themselves R40.22(see series z)0
R40.22′{162,81}22 / 1 / 81 81,162series i trivial Faces share vertices with themselves Faces share edges with themselves R40.22′(see series i)0
R40.24{160,160}21 / 1 / 80 160,160series s trivial Faces share edges with themselves Faces share vertices with themselves Vertices share edges with themselves R40.24(see series s)0

Other Regular Maps

General Index