Regular maps in the orientable surface of genus 43

NameSchläfliV / F / EmV, mFnotes C&D no.imageswire-
frames
C43.1{3,9}18168 / 504 / 756 1,1 replete singular Chiral C43.100
C43.1′{9,3}18504 / 168 / 756 1,1 replete singular Chiral C43.1′00
R43.1{3,9}14168 / 504 / 756 1,1 replete singular R43.100
R43.1′{9,3}14504 / 168 / 756 1,1 replete singular R43.1′00
C43.2{3,12}16884 / 336 / 504 2,1 replete Chiral C43.200
C43.2′{12,3}168336 / 84 / 504 1,2 replete Chiral C43.2′00
R43.2{3,20}6036 / 240 / 360 2,1 replete R43.200
R43.2′{20,3}60240 / 36 / 360 1,2 replete R43.2′00
R43.3{4,8}1484 / 168 / 336 1,1 replete singular R43.300
R43.3′{8,4}14168 / 84 / 336 1,1 replete singular R43.3′00
R43.4{4,8}684 / 168 / 336 1,1 replete singular R43.400
R43.4′{8,4}6168 / 84 / 336 1,1 replete singular R43.4′00
C43.3{6,9}12642 / 63 / 189 3,1 replete Chiral C43.300
C43.3′{9,6}12663 / 42 / 189 1,3 replete Chiral C43.3′00
C43.4{6,9}12642 / 63 / 189 3,1 replete Chiral C43.400
C43.4′{9,6}12663 / 42 / 189 1,3 replete Chiral C43.4′00
C43.5{6,9}12642 / 63 / 189 3,1 replete Chiral C43.500
C43.5′{9,6}12663 / 42 / 189 1,3 replete Chiral C43.5′00
R43.5{4,88}884 / 88 / 176 44,2series m replete R43.5(see series m)0
R43.5′{88,4}8888 / 4 / 176 2,44series l replete R43.5′(see series l)0
R43.6{4,88}884 / 88 / 176 44,1 replete R43.600
R43.6′{88,4}8888 / 4 / 176 1,44 replete R43.6′00
R43.7{4,172}862 / 86 / 172 172,2series h Faces share vertices with themselves R43.7(see series h)0
R43.7′{172,4}8686 / 2 / 172 2,172series j Faces share vertices with themselves R43.7′(see series j)0
R43.14{8,8}642 / 42 / 168 1,1 replete singular R43.1400
R43.15{8,8}842 / 42 / 168 1,1 replete singular R43.1500
C43.6{6,12}5628 / 56 / 168 2,2 replete Chiral C43.600
C43.6′{12,6}5656 / 28 / 168 2,2 replete Chiral C43.6′00
C43.7{6,21}1414 / 49 / 147 7,1 replete Chiral C43.700
C43.7′{21,6}1449 / 14 / 147 1,7 replete Chiral C43.7′00
R43.16{8,12}824 / 36 / 144 2,2 replete R43.1600
R43.16′{12,8}836 / 24 / 144 2,2 replete R43.16′00
R43.17{8,12}824 / 36 / 144 1,2 replete R43.1700
R43.17′{12,8}836 / 24 / 144 2,1 replete R43.17′00
R43.10{6,24}1212 / 48 / 144 6,1 replete R43.1000
R43.10′{24,6}1248 / 12 / 144 1,6 replete R43.10′00
R43.11{6,24}612 / 48 / 144 6,1 replete R43.1100
R43.11′{24,6}648 / 12 / 144 1,6 replete R43.11′00
R43.8{6,24}1212 / 48 / 144 6,2 replete R43.800
R43.8′{24,6}1248 / 12 / 144 2,6 replete R43.8′00
R43.9{6,24}612 / 48 / 144 6,1 replete R43.900
R43.9′{24,6}648 / 12 / 144 1,6 replete R43.9′00
C43.8{6,45}906 / 45 / 135 15,1 replete Chiral C43.800
C43.8′{45,6}9045 / 6 / 135 1,15 replete Chiral C43.8′00
R43.12{6,45}906 / 45 / 135 15,3 replete R43.1200
R43.12′{45,6}9045 / 6 / 135 3,15 replete R43.12′00
R43.13{6,129}862 / 43 / 129 129,3series p Faces share vertices with themselves R43.13(see series p)0
R43.13′{129,6}8643 / 2 / 129 3,129series q Faces share vertices with themselves R43.13′(see series q)0
R43.19{12,15}4016 / 20 / 120 5,2 replete R43.1900
R43.19′{15,12}4020 / 16 / 120 2,5 replete R43.19′00
R43.18{10,20}1212 / 24 / 120 4,2 replete R43.1800
R43.18′{20,10}1224 / 12 / 120 2,4 replete R43.18′00
C43.9{12,36}186 / 18 / 108 12,2 replete Chiral C43.900
C43.9′{36,12}1818 / 6 / 108 2,12 replete Chiral C43.9′00
R43.20{12,36}186 / 18 / 108 18,6 replete R43.2000
R43.20′{36,12}1818 / 6 / 108 6,18 replete R43.20′00
R43.21{12,36}186 / 18 / 108 12,6 replete R43.2100
R43.21′{36,12}1818 / 6 / 108 6,12 replete R43.21′00
C43.10{15,30}147 / 14 / 105 5,5 replete Chiral C43.1000
C43.10′{30,15}1414 / 7 / 105 5,5 replete Chiral C43.10′00
R43.22{24,48}164 / 8 / 96 24,12 replete R43.2200
R43.22′{48,24}168 / 4 / 96 12,24 replete R43.22′00
R43.23{24,48}164 / 8 / 96 24,12 replete R43.2300
R43.23′{48,24}168 / 4 / 96 12,24 replete R43.23′00
R43.25{88,88}42 / 2 / 88 88,88 R43.2500
R43.26{88,88}22 / 2 / 88 88,88series k trivial R43.26(see series k)0
R43.24{87,174}21 / 2 / 87 174,87series z trivial Faces share vertices with themselves Vertices share edges with themselves R43.24(see series z)0
R43.24′{174,87}22 / 1 / 87 87,174series i trivial Faces share vertices with themselves Faces share edges with themselves R43.24′(see series i)0
R43.27{172,172}21 / 1 / 86 172,172series s trivial Faces share edges with themselves Faces share vertices with themselves Vertices share edges with themselves R43.27(see series s)0

Other Regular Maps

General Index