Regular maps in the orientable surface of genus 50

NameSchläfliV / F / EmV, mFnotes C&D no.imageswire-
frames
C50.1{4,6}12196 / 294 / 588 1,1 replete singular Chiral C50.100
C50.1′{6,4}12294 / 196 / 588 1,1 replete singular Chiral C50.1′00
R50.1{3,13}1484 / 364 / 546 1,1 replete singular R50.100
R50.1′{13,3}14364 / 84 / 546 1,1 replete singular R50.1′00
C50.2{6,6}9898 / 98 / 294 1,2 replete Chiral C50.200
C50.2′{6,6}9898 / 98 / 294 2,1 replete Chiral C50.2′00
C50.3{6,6}1498 / 98 / 294 1,1 replete singular Chiral C50.300
C50.4{6,6}1498 / 98 / 294 1,1 replete singular Chiral C50.400
C50.4′{6,6}1498 / 98 / 294 1,1 replete singular Chiral C50.4′00
R50.4{6,6}1498 / 98 / 294 1,2 replete R50.400
R50.4′{6,6}1498 / 98 / 294 2,1 replete R50.4′00
R50.2{4,102}2044 / 102 / 204 51,2series m replete R50.2(see series m)0
R50.2′{102,4}204102 / 4 / 204 2,51series l replete R50.2′(see series l)0
R50.3{4,200}2002 / 100 / 200 200,2series h Faces share vertices with themselves R50.3(see series h)0
R50.3′{200,4}200100 / 2 / 200 2,200series j Faces share vertices with themselves R50.3′(see series j)0
R50.7{8,8}1449 / 49 / 196 1,1 replete singular R50.700
R50.7′{8,8}1449 / 49 / 196 1,1 replete singular R50.7′00
C50.5{6,24}5614 / 56 / 168 4,1 replete Chiral C50.500
C50.5′{24,6}5656 / 14 / 168 1,4 replete Chiral C50.5′00
C50.6{6,24}5614 / 56 / 168 8,1 replete Chiral C50.600
C50.6′{24,6}5656 / 14 / 168 1,8 replete Chiral C50.6′00
R50.5{6,52}1566 / 52 / 156 26,3 replete R50.500
R50.5′{52,6}15652 / 6 / 156 3,26 replete R50.5′00
R50.6{6,150}502 / 50 / 150 150,3series p Faces share vertices with themselves R50.6(see series p)0
R50.6′{150,6}5050 / 2 / 150 3,150series q Faces share vertices with themselves R50.6′(see series q)0
R50.8{8,68}1364 / 34 / 136 34,4 replete R50.800
R50.8′{68,8}13634 / 4 / 136 4,34 replete R50.8′00
R50.9{12,22}13212 / 22 / 132 11,6 replete R50.900
R50.9′{22,12}13222 / 12 / 132 6,11 replete R50.9′00
C50.7{18,18}1414 / 14 / 126 3,6 replete Chiral C50.700
C50.7′{18,18}1414 / 14 / 126 6,3 replete Chiral C50.7′00
R50.12{20,24}12010 / 12 / 120 12,10 replete R50.1200
R50.12′{24,20}12012 / 10 / 120 10,12 replete R50.12′00
R50.11{15,40}126 / 16 / 120 10,5 replete R50.1100
R50.11′{40,15}1216 / 6 / 120 5,10 replete R50.11′00
R50.10{12,120}402 / 20 / 120 120,6 R50.1000
R50.10′{120,12}4020 / 2 / 120 6,120 R50.10′00
R50.13{22,110}102 / 10 / 110 110,11 R50.1300
R50.13′{110,22}1010 / 2 / 110 11,110 R50.13′00
R50.14{42,105}102 / 5 / 105 105,21 R50.1400
R50.14′{105,42}105 / 2 / 105 21,105 R50.14′00
R50.15{52,104}82 / 4 / 104 104,26 R50.1500
R50.15′{104,52}84 / 2 / 104 26,104 R50.15′00
R50.17{102,102}22 / 2 / 102 102,102series k trivial Faces share vertices with themselves R50.17(see series k)0
R50.16{101,202}21 / 2 / 101 202,101series z trivial Faces share vertices with themselves Vertices share edges with themselves R50.16(see series z)0
R50.16′{202,101}22 / 1 / 101 101,202series i trivial Faces share vertices with themselves Faces share edges with themselves R50.16′(see series i)0
R50.18{200,200}21 / 1 / 100 200,200series s trivial Faces share edges with themselves Faces share vertices with themselves Vertices share edges with themselves R50.18(see series s)0

Other Regular Maps

General Index