Regular maps in the orientable surface of genus 56

NameSchläfliV / F / EmV, mFnotes C&D no.imageswire-
frames
R56.3{4,6}10220 / 330 / 660 1,1 replete singular R56.300
R56.3′{6,4}10330 / 220 / 660 1,1 replete singular R56.3′00
R56.1{3,12}10110 / 440 / 660 1,1 replete singular R56.100
R56.1′{12,3}10440 / 110 / 660 1,1 replete singular R56.1′00
R56.2{3,12}12110 / 440 / 660 1,1 replete singular R56.200
R56.2′{12,3}12440 / 110 / 660 1,1 replete singular R56.2′00
R56.6{6,6}10110 / 110 / 330 1,1 replete singular R56.600
C56.1{5,10}11055 / 110 / 275 1,1 replete singular Chiral C56.100
C56.1′{10,5}110110 / 55 / 275 1,1 replete singular Chiral C56.1′00
C56.2{5,10}11055 / 110 / 275 1,1 replete singular Chiral C56.200
C56.2′{10,5}110110 / 55 / 275 1,1 replete singular Chiral C56.2′00
R56.4{4,114}2284 / 114 / 228 57,2series m replete R56.4(see series m)0
R56.4′{114,4}228114 / 4 / 228 2,57series l replete R56.4′(see series l)0
R56.5{4,224}2242 / 112 / 224 224,2series h Faces share vertices with themselves R56.5(see series h)0
R56.5′{224,4}224112 / 2 / 224 2,224series j Faces share vertices with themselves R56.5′(see series j)0
R56.9{8,10}840 / 50 / 200 1,2 replete R56.900
R56.9′{10,8}850 / 40 / 200 2,1 replete R56.9′00
R56.7{6,58}1746 / 58 / 174 29,3 replete R56.700
R56.7′{58,6}17458 / 6 / 174 3,29 replete R56.7′00
R56.10{8,21}8416 / 42 / 168 7,2 replete R56.1000
R56.10′{21,8}8442 / 16 / 168 2,7 replete R56.10′00
R56.8{6,168}562 / 56 / 168 168,3series p Faces share vertices with themselves R56.8(see series p)0
R56.8′{168,6}5656 / 2 / 168 3,168series q Faces share vertices with themselves R56.8′(see series q)0
C56.3{10,15}6622 / 33 / 165 3,1 replete Chiral C56.300
C56.3′{15,10}6633 / 22 / 165 1,3 replete Chiral C56.3′00
C56.4{10,15}6622 / 33 / 165 3,1 replete Chiral C56.400
C56.4′{15,10}6633 / 22 / 165 1,3 replete Chiral C56.4′00
R56.11{8,76}1524 / 38 / 152 38,4 replete R56.1100
R56.11′{76,8}15238 / 4 / 152 4,38 replete R56.11′00
R56.12{10,30}3010 / 30 / 150 15,5 replete R56.1200
R56.12′{30,10}3030 / 10 / 150 5,15 replete R56.12′00
R56.13{10,30}3010 / 30 / 150 6,5 replete R56.1300
R56.13′{30,10}3030 / 10 / 150 5,6 replete R56.13′00
R56.14{10,30}3010 / 30 / 150 15,1 replete R56.1400
R56.14′{30,10}3030 / 10 / 150 1,15 replete R56.14′00
R56.16{16,18}14416 / 18 / 144 9,8 replete R56.1600
R56.16′{18,16}14418 / 16 / 144 8,9 replete R56.16′00
R56.15{10,140}282 / 28 / 140 140,5 R56.1500
R56.15′{140,10}2828 / 2 / 140 5,140 R56.15′00
R56.17{18,126}142 / 14 / 126 126,9 R56.1700
R56.17′{126,18}1414 / 2 / 126 9,126 R56.17′00
R56.18{25,50}105 / 10 / 125 25,5 replete R56.1800
R56.18′{50,25}1010 / 5 / 125 5,25 replete R56.18′00
R56.21{40,60}244 / 6 / 120 30,20 replete R56.2100
R56.21′{60,40}246 / 4 / 120 20,30 replete R56.21′00
R56.19{30,120}82 / 8 / 120 120,15 R56.1900
R56.19′{120,30}88 / 2 / 120 15,120 R56.19′00
R56.20{34,119}142 / 7 / 119 119,17 R56.2000
R56.20′{119,34}147 / 2 / 119 17,119 R56.20′00
R56.22{58,116}42 / 4 / 116 116,29 R56.2200
R56.22′{116,58}44 / 2 / 116 29,116 R56.22′00
R56.24{114,114}22 / 2 / 114 114,114series k trivial Faces share vertices with themselves R56.24(see series k)0
R56.23{113,226}21 / 2 / 113 226,113series z trivial Faces share vertices with themselves Vertices share edges with themselves R56.23(see series z)0
R56.23′{226,113}22 / 1 / 113 113,226series i trivial Faces share vertices with themselves Faces share edges with themselves R56.23′(see series i)0
R56.25{224,224}21 / 1 / 112 224,224series s trivial Faces share edges with themselves Faces share vertices with themselves Vertices share edges with themselves R56.25(see series s)0

Other Regular Maps

General Index