Regular maps in the orientable surface of genus 61

NameSchläfliV / F / EmV, mFnotes C&D no.imageswire-
frames
C61.1{4,6}10240 / 360 / 720 1,1 replete singular Chiral C61.100
C61.1′{6,4}10360 / 240 / 720 1,1 replete singular Chiral C61.1′00
R61.1{4,6}60240 / 360 / 720 1,1 replete singular R61.100
R61.1′{6,4}60360 / 240 / 720 1,1 replete singular R61.1′00
R61.2{4,6}8240 / 360 / 720 1,1 replete singular R61.200
R61.2′{6,4}8360 / 240 / 720 1,1 replete singular R61.2′00
C61.7{6,6}8120 / 120 / 360 1,1 replete singular Chiral C61.700
R61.12{6,6}6120 / 120 / 360 1,1 replete singular R61.1200
R61.13{6,6}6120 / 120 / 360 1,1 replete singular R61.1300
R61.13′{6,6}6120 / 120 / 360 1,1 replete singular R61.13′00
R61.14{6,6}10120 / 120 / 360 1,1 replete singular R61.1400
C61.2{4,12}2060 / 180 / 360 1,1 replete singular Chiral C61.200
C61.2′{12,4}20180 / 60 / 360 1,1 replete singular Chiral C61.2′00
R61.3{4,14}848 / 168 / 336 2,1 replete R61.300
R61.3′{14,4}8168 / 48 / 336 1,2 replete R61.3′00
C61.3{4,16}8040 / 160 / 320 4,1 replete Chiral C61.300
C61.3′{16,4}80160 / 40 / 320 1,4 replete Chiral C61.3′00
C61.4{4,16}8040 / 160 / 320 4,1 replete Chiral C61.400
C61.4′{16,4}80160 / 40 / 320 1,4 replete Chiral C61.4′00
R61.10{5,10}3060 / 120 / 300 1,1 replete singular R61.1000
R61.10′{10,5}30120 / 60 / 300 1,1 replete singular R61.10′00
R61.11{5,10}660 / 120 / 300 2,1 replete R61.1100
R61.11′{10,5}6120 / 60 / 300 1,2 replete R61.11′00
R61.4{4,24}824 / 144 / 288 2,1 replete R61.400
R61.4′{24,4}8144 / 24 / 288 1,2 replete R61.4′00
R61.5{4,24}424 / 144 / 288 2,1λ replete R61.500
R61.5′{24,4}4144 / 24 / 288 1,2λ' replete R61.5′(see ser λ')0
C61.5{4,28}14020 / 140 / 280 7,1 replete Chiral C61.500
C61.5′{28,4}140140 / 20 / 280 1,7 replete Chiral C61.5′00
C61.6{4,52}13010 / 130 / 260 13,1 replete Chiral C61.600
C61.6′{52,4}130130 / 10 / 260 1,13 replete Chiral C61.6′00
R61.6{4,64}648 / 128 / 256 16,1 replete R61.600
R61.6′{64,4}64128 / 8 / 256 1,16 replete R61.6′00
R61.7{4,64}648 / 128 / 256 16,1 replete R61.700
R61.7′{64,4}64128 / 8 / 256 1,16 replete R61.7′00
R61.8{4,124}1244 / 124 / 248 62,2θ replete R61.800
R61.8′{124,4}124124 / 4 / 248 2,62θ' replete R61.8′(see ser θ')0
R61.9{4,244}1222 / 122 / 244 244,2ζ'°' Faces share vertices with themselves R61.900
R61.9′{244,4}122122 / 2 / 244 2,244ζ'° Faces share vertices with themselves R61.9′(see ser ζ'°)0
R61.15{6,12}1240 / 80 / 240 2,1 replete R61.1500
R61.15′{12,6}1280 / 40 / 240 1,2 replete R61.15′00
R61.16{6,12}640 / 80 / 240 2,1 replete R61.1600
R61.16′{12,6}680 / 40 / 240 1,2 replete R61.16′00
C61.8{6,18}3624 / 72 / 216 6,1 replete Chiral C61.800
C61.8′{18,6}3672 / 24 / 216 1,6 replete Chiral C61.8′00
R61.17{6,18}3624 / 72 / 216 6,1 replete R61.1700
R61.17′{18,6}3672 / 24 / 216 1,6 replete R61.17′00
R61.18{6,48}168 / 64 / 192 16,1 replete R61.1800
R61.18′{48,6}1664 / 8 / 192 1,16 replete R61.18′00
R61.19{6,48}168 / 64 / 192 16,1 replete R61.1900
R61.19′{48,6}1664 / 8 / 192 1,16 replete R61.19′00
C61.9{6,63}1266 / 63 / 189 21,1 replete Chiral C61.900
C61.9′{63,6}12663 / 6 / 189 1,21 replete Chiral C61.9′00
R61.20{6,63}1266 / 63 / 189 21,3 replete R61.2000
R61.20′{63,6}12663 / 6 / 189 3,21 replete R61.20′00
R61.21{6,183}1222 / 61 / 183 183,3δ Faces share vertices with themselves R61.2100
R61.21′{183,6}12261 / 2 / 183 3,183δ' Faces share vertices with themselves R61.21′(see ser δ')0
C61.10{12,12}3030 / 30 / 180 3,3 replete Chiral C61.1000
C61.11{12,12}3030 / 30 / 180 3,1 replete Chiral C61.1100
C61.11′{12,12}3030 / 30 / 180 1,3 replete Chiral C61.11′00
R61.22{10,15}624 / 36 / 180 3,1 replete R61.2200
R61.22′{15,10}636 / 24 / 180 1,3 replete R61.22′00
R61.23{14,14}624 / 24 / 168 2,2 replete R61.2300
C61.12{16,16}4020 / 20 / 160 4,4 replete Chiral C61.1200
C61.12′{16,16}4020 / 20 / 160 4,4 replete Chiral C61.12′00
C61.13{16,16}2020 / 20 / 160 4,4 replete Chiral C61.1300
C61.14{16,16}2020 / 20 / 160 4,4 replete Chiral C61.1400
R61.26{24,24}1212 / 12 / 144 12,4 replete R61.2600
R61.26′{24,24}1212 / 12 / 144 4,12 replete R61.26′00
R61.27{24,24}1212 / 12 / 144 12,4 replete R61.2700
R61.27′{24,24}1212 / 12 / 144 4,12 replete R61.27′00
R61.28{24,24}1212 / 12 / 144 12,12 replete R61.2800
R61.29{24,24}1212 / 12 / 144 12,12 replete R61.2900
R61.24{18,36}88 / 16 / 144 12,6 replete R61.2400
R61.24′{36,18}816 / 8 / 144 6,12 replete R61.24′00
R61.25{18,36}48 / 16 / 144 12,3 replete R61.2500
R61.25′{36,18}416 / 8 / 144 3,12 replete R61.25′00
C61.15{28,28}1010 / 10 / 140 7,7 replete Chiral C61.1500
C61.16{30,45}186 / 9 / 135 15,5 replete Chiral C61.1600
C61.16′{45,30}189 / 6 / 135 5,15 replete Chiral C61.16′00
R61.30{30,45}186 / 9 / 135 15,15 replete R61.3000
R61.30′{45,30}189 / 6 / 135 15,15 replete R61.30′00
R61.31{33,66}44 / 8 / 132 22,11 replete R61.3100
R61.31′{66,33}48 / 4 / 132 11,22 replete R61.31′00
C61.17{52,52}105 / 5 / 130 13,13 replete Chiral C61.1700
R61.32{64,64}44 / 4 / 128 32,32 replete R61.3200
R61.33{64,64}84 / 4 / 128 32,32 replete R61.3300
R61.33′{64,64}84 / 4 / 128 32,32 replete R61.33′00
R61.34{64,64}44 / 4 / 128 32,32 replete R61.3400
R61.36{124,124}22 / 2 / 124 124,124γ trivial Faces share vertices with themselves R61.3600
R61.35{123,246}21 / 2 / 123 246,123α trivial Faces share vertices with themselves Vertices share edges with themselves R61.3500
R61.35′{246,123}22 / 1 / 123 123,246α' trivial Faces share vertices with themselves Faces share edges with themselves R61.35′(see ser α')0
R61.37{244,244}21 / 1 / 122 244,244β trivial Faces share edges with themselves Faces share vertices with themselves Vertices share edges with themselves R61.3700

Other Regular Maps

General Index