Regular maps in the orientable surface of genus 63

NameSchläfliV / F / EmV, mFnotes C&D no.imageswire-
frames
C63.1{3,12}248124 / 496 / 744 2,1 replete Chiral C63.100
C63.1′{12,3}248496 / 124 / 744 1,2 replete Chiral C63.1′00
R63.1{4,66}668 / 132 / 264 22,1 replete R63.100
R63.1′{66,4}66132 / 8 / 264 1,22 replete R63.1′00
R63.2{4,128}1284 / 128 / 256 64,2θ replete R63.200
R63.2′{128,4}128128 / 4 / 256 2,64θ' replete R63.2′(see ser θ')0
R63.3{4,128}1284 / 128 / 256 64,1ι replete R63.300
R63.3′{128,4}128128 / 4 / 256 1,64ι' replete R63.3′(see ser ι')0
R63.5{7,9}656 / 72 / 252 1,1 replete singular R63.500
R63.5′{9,7}672 / 56 / 252 1,1 replete singular R63.5′00
R63.6{7,9}1456 / 72 / 252 1,1 replete singular R63.600
R63.6′{9,7}1472 / 56 / 252 1,1 replete singular R63.6′00
R63.7{7,9}1456 / 72 / 252 1,1 replete singular R63.700
R63.7′{9,7}1472 / 56 / 252 1,1 replete singular R63.7′00
R63.4{4,252}1262 / 126 / 252 252,2ζ'°' Faces share vertices with themselves R63.400
R63.4′{252,4}126126 / 2 / 252 2,252ζ'° Faces share vertices with themselves R63.4′(see ser ζ'°)0
R63.8{8,44}888 / 44 / 176 22,4 replete R63.800
R63.8′{44,8}8844 / 8 / 176 4,22 replete R63.8′00
R63.9{8,44}888 / 44 / 176 11,4 replete R63.900
R63.9′{44,8}8844 / 8 / 176 4,11 replete R63.9′00
R63.12{12,21}5616 / 28 / 168 7,2 replete R63.1200
R63.12′{21,12}5628 / 16 / 168 2,7 replete R63.12′00
R63.10{8,168}842 / 42 / 168 168,4 R63.1000
R63.10′{168,8}8442 / 2 / 168 4,168 R63.10′00
R63.11{8,168}422 / 42 / 168 168,4 R63.1100
R63.11′{168,8}4242 / 2 / 168 4,168 R63.11′00
R63.14{16,20}8016 / 20 / 160 10,8 replete R63.1400
R63.14′{20,16}8020 / 16 / 160 8,10 replete R63.14′00
R63.15{16,20}8016 / 20 / 160 5,8 replete R63.1500
R63.15′{20,16}8020 / 16 / 160 8,5 replete R63.15′00
R63.13{12,52}786 / 26 / 156 26,6 replete R63.1300
R63.13′{52,12}7826 / 6 / 156 6,26 replete R63.13′00
R63.16{16,144}182 / 18 / 144 144,8 R63.1600
R63.16′{144,16}1818 / 2 / 144 8,144 R63.16′00
R63.17{16,144}362 / 18 / 144 144,8 R63.1700
R63.17′{144,16}3618 / 2 / 144 8,144 R63.17′00
C63.2{35,35}48 / 8 / 140 5,5 replete Chiral C63.200
C63.2′{35,35}48 / 8 / 140 5,5 replete Chiral C63.2′00
R63.18{20,140}142 / 14 / 140 140,10 R63.1800
R63.18′{140,20}1414 / 2 / 140 10,140 R63.18′00
R63.19{38,133}142 / 7 / 133 133,19 R63.1900
R63.19′{133,38}147 / 2 / 133 19,133 R63.19′00
R63.21{66,66}44 / 4 / 132 22,22ξ° replete R63.2100
R63.20{44,132}62 / 6 / 132 132,22ε° R63.2000
R63.20′{132,44}66 / 2 / 132 22,132ε°' R63.20′(see ser ε°')0
R63.22{86,129}62 / 3 / 129 129,43δ° R63.2200
R63.22′{129,86}63 / 2 / 129 43,129δ°' R63.22′(see ser δ°')0
R63.24{128,128}42 / 2 / 128 128,128η° R63.2400
R63.25{128,128}22 / 2 / 128 128,128γ trivial R63.2500
R63.23{127,254}21 / 2 / 127 254,127α trivial Faces share vertices with themselves Vertices share edges with themselves R63.2300
R63.23′{254,127}22 / 1 / 127 127,254α' trivial Faces share vertices with themselves Faces share edges with themselves R63.23′(see ser α')0
R63.26{252,252}21 / 1 / 126 252,252β trivial Faces share edges with themselves Faces share vertices with themselves Vertices share edges with themselves R63.2600

Other Regular Maps

General Index