Regular maps in the orientable surface of genus 68

NameSchläfliV / F / EmV, mFnotes C&D no.imageswire-
frames
C68.1{6,6}134134 / 134 / 402 1,2 replete Chiral C68.100
C68.1′{6,6}134134 / 134 / 402 2,1 replete Chiral C68.1′00
R68.1{4,138}2764 / 138 / 276 69,2series m replete R68.1(see series m)0
R68.1′{138,4}276138 / 4 / 276 2,69series l replete R68.1′(see series l)0
R68.2{4,272}2722 / 136 / 272 272,2series h Faces share vertices with themselves R68.2(see series h)0
R68.2′{272,4}272136 / 2 / 272 2,272series j Faces share vertices with themselves R68.2′(see series j)0
R68.3{6,70}2106 / 70 / 210 35,3 replete R68.300
R68.3′{70,6}21070 / 6 / 210 3,35 replete R68.3′00
R68.4{6,204}682 / 68 / 204 204,3series p Faces share vertices with themselves R68.4(see series p)0
R68.4′{204,6}6868 / 2 / 204 3,204series q Faces share vertices with themselves R68.4′(see series q)0
R68.5{8,92}1844 / 46 / 184 46,4 replete R68.500
R68.5′{92,8}18446 / 4 / 184 4,46 replete R68.5′00
R68.6{10,36}18010 / 36 / 180 18,5 replete R68.600
R68.6′{36,10}18036 / 10 / 180 5,18 replete R68.6′00
R68.7{10,170}342 / 34 / 170 170,5 R68.700
R68.7′{170,10}3434 / 2 / 170 5,170 R68.7′00
R68.8{12,56}1686 / 28 / 168 28,6 replete R68.800
R68.8′{56,12}16828 / 6 / 168 6,28 replete R68.8′00
R68.10{20,32}16010 / 16 / 160 16,10 replete R68.1000
R68.10′{32,20}16016 / 10 / 160 10,16 replete R68.10′00
R68.9{18,153}342 / 17 / 153 153,9 R68.900
R68.9′{153,18}3417 / 2 / 153 9,153 R68.9′00
R68.11{36,144}162 / 8 / 144 144,18 R68.1100
R68.11′{144,36}168 / 2 / 144 18,144 R68.11′00
R68.12{70,140}42 / 4 / 140 140,35 R68.1200
R68.12′{140,70}44 / 2 / 140 35,140 R68.12′00
R68.14{138,138}22 / 2 / 138 138,138series k trivial Faces share vertices with themselves R68.14(see series k)0
R68.13{137,274}21 / 2 / 137 274,137series z trivial Faces share vertices with themselves Vertices share edges with themselves R68.13(see series z)0
R68.13′{274,137}22 / 1 / 137 137,274series i trivial Faces share vertices with themselves Faces share edges with themselves R68.13′(see series i)0
R68.15{272,272}21 / 1 / 136 272,272series s trivial Faces share edges with themselves Faces share vertices with themselves Vertices share edges with themselves R68.15(see series s)0

Other Regular Maps

General Index