Regular maps in the orientable surface of genus 69

NameSchläfliV / F / EmV, mFnotes C&D no.imageswire-
frames
R69.1{3,9}18272 / 816 / 1224 1,1 replete singular R69.100
R69.1′{9,3}18816 / 272 / 1224 1,1 replete singular R69.1′00
R69.2{3,9}16272 / 816 / 1224 1,1 replete singular R69.200
R69.2′{9,3}16816 / 272 / 1224 1,1 replete singular R69.2′00
R69.3{3,9}34272 / 816 / 1224 1,1 replete singular R69.300
R69.3′{9,3}34816 / 272 / 1224 1,1 replete singular R69.3′00
C69.1{4,8}136136 / 272 / 544 2,1 replete Chiral C69.100
C69.1′{8,4}136272 / 136 / 544 1,2 replete Chiral C69.1′00
C69.2{4,8}68136 / 272 / 544 2,1 replete Chiral C69.200
C69.2′{8,4}68272 / 136 / 544 1,2 replete Chiral C69.2′00
C69.3{4,12}20468 / 204 / 408 3,1 replete Chiral C69.300
C69.3′{12,4}204204 / 68 / 408 1,3 replete Chiral C69.3′00
C69.4{4,20}17034 / 170 / 340 5,1 replete Chiral C69.400
C69.4′{20,4}170170 / 34 / 340 1,5 replete Chiral C69.4′00
R69.4{4,72}728 / 144 / 288 24,1 replete R69.400
R69.4′{72,4}72144 / 8 / 288 1,24 replete R69.4′00
R69.5{4,72}728 / 144 / 288 24,1 replete R69.500
R69.5′{72,4}72144 / 8 / 288 1,24 replete R69.5′00
R69.6{4,72}368 / 144 / 288 24,1 replete R69.600
R69.6′{72,4}36144 / 8 / 288 1,24 replete R69.6′00
R69.7{4,72}188 / 144 / 288 24,1 replete R69.700
R69.7′{72,4}18144 / 8 / 288 1,24 replete R69.7′00
R69.8{4,72}728 / 144 / 288 18,1 replete R69.800
R69.8′{72,4}72144 / 8 / 288 1,18 replete R69.8′00
R69.9{4,72}368 / 144 / 288 18,1 replete R69.900
R69.9′{72,4}36144 / 8 / 288 1,18 replete R69.9′00
R69.10{4,140}1404 / 140 / 280 70,2series m replete R69.10(see series m)0
R69.10′{140,4}140140 / 4 / 280 2,70series l replete R69.10′(see series l)0
R69.11{4,276}1382 / 138 / 276 276,2series h Faces share vertices with themselves R69.11(see series h)0
R69.11′{276,4}138138 / 2 / 276 2,276series j Faces share vertices with themselves R69.11′(see series j)0
C69.5{8,8}6868 / 68 / 272 2,2 replete Chiral C69.500
C69.6{8,8}6868 / 68 / 272 2,2 replete Chiral C69.600
C69.7{8,8}6868 / 68 / 272 1,1 replete singular Chiral C69.700
C69.7′{8,8}6868 / 68 / 272 1,1 replete singular Chiral C69.7′00
R69.12{6,20}2024 / 80 / 240 4,2 replete R69.1200
R69.12′{20,6}2080 / 24 / 240 2,4 replete R69.12′00
R69.13{6,20}2024 / 80 / 240 4,1 replete R69.1300
R69.13′{20,6}2080 / 24 / 240 1,4 replete R69.13′00
R69.14{6,20}6024 / 80 / 240 5,1 replete R69.1400
R69.14′{20,6}6080 / 24 / 240 1,5 replete R69.14′00
R69.15{6,20}424 / 80 / 240 4,1 replete R69.1500
R69.15′{20,6}480 / 24 / 240 1,4 replete R69.15′00
R69.16{6,20}824 / 80 / 240 4,1 replete R69.1600
R69.16′{20,6}880 / 24 / 240 1,4 replete R69.16′00
C69.8{12,12}3434 / 34 / 204 3,3 replete Chiral C69.800
R69.29{12,16}4824 / 32 / 192 4,2 replete R69.2900
R69.29′{16,12}4832 / 24 / 192 2,4 replete R69.29′00
R69.30{12,16}4824 / 32 / 192 4,2 replete R69.3000
R69.30′{16,12}4832 / 24 / 192 2,4 replete R69.30′00
R69.31{12,16}2424 / 32 / 192 2,4 replete R69.3100
R69.31′{16,12}2432 / 24 / 192 4,2 replete R69.31′00
R69.32{12,16}2424 / 32 / 192 2,4 replete R69.3200
R69.32′{16,12}2432 / 24 / 192 4,2 replete R69.32′00
R69.33{12,16}4824 / 32 / 192 4,3 replete R69.3300
R69.33′{16,12}4832 / 24 / 192 3,4 replete R69.33′00
R69.34{12,16}4824 / 32 / 192 4,3 replete R69.3400
R69.34′{16,12}4832 / 24 / 192 3,4 replete R69.34′00
R69.17{8,48}488 / 48 / 192 16,2 replete R69.1700
R69.17′{48,8}4848 / 8 / 192 2,16 replete R69.17′00
R69.18{8,48}488 / 48 / 192 16,2 replete R69.1800
R69.18′{48,8}4848 / 8 / 192 2,16 replete R69.18′00
R69.19{8,48}488 / 48 / 192 12,4 replete R69.1900
R69.19′{48,8}4848 / 8 / 192 4,12 replete R69.19′00
R69.20{8,48}488 / 48 / 192 24,4 replete R69.2000
R69.20′{48,8}4848 / 8 / 192 4,24 replete R69.20′00
R69.21{8,48}488 / 48 / 192 12,2 replete R69.2100
R69.21′{48,8}4848 / 8 / 192 2,12 replete R69.21′00
R69.22{8,48}488 / 48 / 192 12,2 replete R69.2200
R69.22′{48,8}4848 / 8 / 192 2,12 replete R69.22′00
R69.23{8,48}488 / 48 / 192 12,2 replete R69.2300
R69.23′{48,8}4848 / 8 / 192 2,12 replete R69.23′00
R69.24{8,48}488 / 48 / 192 24,2 replete R69.2400
R69.24′{48,8}4848 / 8 / 192 2,24 replete R69.24′00
R69.25{8,48}488 / 48 / 192 24,1 replete R69.2500
R69.25′{48,8}4848 / 8 / 192 1,24 replete R69.25′00
R69.26{8,48}488 / 48 / 192 24,1 replete R69.2600
R69.26′{48,8}4848 / 8 / 192 1,24 replete R69.26′00
R69.27{8,184}462 / 46 / 184 184,4 R69.2700
R69.27′{184,8}4646 / 2 / 184 4,184 R69.27′00
R69.28{8,184}922 / 46 / 184 184,4 R69.2800
R69.28′{184,8}9246 / 2 / 184 4,184 R69.28′00
C69.9{20,20}3417 / 17 / 170 5,5 replete Chiral C69.900
R69.35{12,84}284 / 28 / 168 42,6 replete R69.3500
R69.35′{84,12}2828 / 4 / 168 6,42 replete R69.35′00
R69.36{14,161}462 / 23 / 161 161,7 R69.3600
R69.36′{161,14}4623 / 2 / 161 7,161 R69.36′00
R69.41{20,40}88 / 16 / 160 10,5 replete R69.4100
R69.41′{40,20}816 / 8 / 160 5,10 replete R69.41′00
R69.42{20,40}48 / 16 / 160 10,5 replete R69.4200
R69.42′{40,20}416 / 8 / 160 5,10 replete R69.42′00
R69.37{16,80}204 / 20 / 160 40,8 replete R69.3700
R69.37′{80,16}2020 / 4 / 160 8,40 replete R69.37′00
R69.38{16,80}404 / 20 / 160 40,8 replete R69.3800
R69.38′{80,16}4020 / 4 / 160 8,40 replete R69.38′00
R69.39{16,80}404 / 20 / 160 40,8 replete R69.3900
R69.39′{80,16}4020 / 4 / 160 8,40 replete R69.39′00
R69.40{16,80}204 / 20 / 160 40,8 replete R69.4000
R69.40′{80,16}2020 / 4 / 160 8,40 replete R69.40′00
R69.43{72,72}84 / 4 / 144 24,24 replete R69.4300
R69.44{72,72}84 / 4 / 144 24,24 replete R69.4400
R69.45{72,72}44 / 4 / 144 24,24 replete R69.4500
R69.46{72,72}44 / 4 / 144 24,24 replete R69.4600
R69.47{72,72}44 / 4 / 144 36,36 replete R69.4700
R69.48{72,72}44 / 4 / 144 36,36 replete R69.4800
R69.49{94,141}62 / 3 / 141 141,47 R69.4900
R69.49′{141,94}63 / 2 / 141 47,141 R69.49′00
R69.51{140,140}22 / 2 / 140 140,140series k trivial Faces share vertices with themselves R69.51(see series k)0
R69.50{139,278}21 / 2 / 139 278,139series z trivial Faces share vertices with themselves Vertices share edges with themselves R69.50(see series z)0
R69.50′{278,139}22 / 1 / 139 139,278series i trivial Faces share vertices with themselves Faces share edges with themselves R69.50′(see series i)0
R69.52{276,276}21 / 1 / 138 276,276series s trivial Faces share edges with themselves Faces share vertices with themselves Vertices share edges with themselves R69.52(see series s)0

Other Regular Maps

General Index