Regular maps in the orientable surface of genus 71

NameSchläfliV / F / EmV, mFnotes C&D no.imageswire-
frames
R71.4{6,8}484 / 112 / 336 1,1 replete singular R71.400
R71.4′{8,6}4112 / 84 / 336 1,1 replete singular R71.4′00
R71.5{6,8}884 / 112 / 336 1,2 replete R71.500
R71.5′{8,6}8112 / 84 / 336 2,1 replete R71.5′00
R71.6{6,8}1484 / 112 / 336 1,2 replete R71.600
R71.6′{8,6}14112 / 84 / 336 2,1 replete R71.6′00
R71.7{6,8}1684 / 112 / 336 2,1 replete R71.700
R71.7′{8,6}16112 / 84 / 336 1,2 replete R71.7′00
R71.8{6,8}1684 / 112 / 336 2,1 replete R71.800
R71.8′{8,6}16112 / 84 / 336 1,2 replete R71.8′00
R71.9{6,8}684 / 112 / 336 1,1 replete singular R71.900
R71.9′{8,6}6112 / 84 / 336 1,1 replete singular R71.9′00
C71.1{4,32}16020 / 160 / 320 8,1 Chiral replete C71.100
C71.1′{32,4}160160 / 20 / 320 1,8 Chiral replete C71.1′00
C71.2{4,32}16020 / 160 / 320 8,1 Chiral replete C71.200
C71.2′{32,4}160160 / 20 / 320 1,8 Chiral replete C71.2′00
C71.3{4,60}3010 / 150 / 300 15,1 Chiral replete C71.300
C71.3′{60,4}30150 / 10 / 300 1,15 Chiral replete C71.3′00
R71.1{4,144}1444 / 144 / 288 72,2 replete R71.100
R71.1′{144,4}144144 / 4 / 288 2,72 replete R71.1′00
R71.2{4,144}1444 / 144 / 288 72,1ι replete R71.200
R71.2′{144,4}144144 / 4 / 288 1,72ι' replete R71.2′(see ser ι')0
R71.3{4,284}1422 / 142 / 284 284,2ζ'°' Faces share vertices with themselves R71.300
R71.3′{284,4}142142 / 2 / 284 2,284ζ'° Faces share vertices with themselves R71.3′(see ser ζ'°)0
R71.15{9,9}1856 / 56 / 252 1,1 replete singular R71.1500
R71.15′{9,9}1856 / 56 / 252 1,1 replete singular R71.15′00
C71.5{8,12}12040 / 60 / 240 3,2 Chiral replete C71.500
C71.5′{12,8}12060 / 40 / 240 2,3 Chiral replete C71.5′00
C71.6{8,12}12040 / 60 / 240 3,2 Chiral replete C71.600
C71.6′{12,8}12060 / 40 / 240 2,3 Chiral replete C71.6′00
R71.11{8,12}1040 / 60 / 240 2,2 replete R71.1100
R71.11′{12,8}1060 / 40 / 240 2,2 replete R71.11′00
R71.12{8,12}2040 / 60 / 240 2,2 replete R71.1200
R71.12′{12,8}2060 / 40 / 240 2,2 replete R71.12′00
C71.4{6,33}15414 / 77 / 231 11,1 Chiral replete C71.400
C71.4′{33,6}15477 / 14 / 231 1,11 Chiral replete C71.4′00
R71.10{6,213}1422 / 71 / 213 213,3δ Faces share vertices with themselves R71.1000
R71.10′{213,6}14271 / 2 / 213 3,213δ' Faces share vertices with themselves R71.10′(see ser δ')0
C71.7{8,40}1010 / 50 / 200 10,2 Chiral replete C71.700
C71.7′{40,8}1050 / 10 / 200 2,10 Chiral replete C71.7′00
C71.8{8,40}2010 / 50 / 200 10,2 Chiral replete C71.800
C71.8′{40,8}2050 / 10 / 200 2,10 Chiral replete C71.8′00
R71.13{8,96}964 / 48 / 192 48,4 replete R71.1300
R71.13′{96,8}9648 / 4 / 192 4,48 replete R71.13′00
R71.14{8,96}964 / 48 / 192 48,4 replete R71.1400
R71.14′{96,8}9648 / 4 / 192 4,48 replete R71.14′00
C71.10{24,24}2814 / 14 / 168 4,8 Chiral replete C71.1000
C71.10′{24,24}2814 / 14 / 168 8,4 Chiral replete C71.10′00
C71.9{24,24}1414 / 14 / 168 4,8 Chiral replete C71.900
C71.9′{24,24}1414 / 14 / 168 8,4 Chiral replete C71.9′00
C71.11{32,32}1010 / 10 / 160 8,8 Chiral replete C71.1100
C71.12{32,32}2010 / 10 / 160 8,8 Chiral replete C71.1200
R71.16{20,80}164 / 16 / 160 40,10 replete R71.1600
R71.16′{80,20}1616 / 4 / 160 10,40 replete R71.16′00
R71.17{20,80}164 / 16 / 160 40,5 replete R71.1700
R71.17′{80,20}1616 / 4 / 160 5,40 replete R71.17′00
C71.13{60,60}105 / 5 / 150 15,15 Chiral replete C71.1300
R71.19{144,144}42 / 2 / 144 144,144η° R71.1900
R71.20{144,144}22 / 2 / 144 144,144γ° trivial R71.2000
R71.18{143,286}21 / 2 / 143 286,143α Faces share vertices with themselves Vertices share edges with themselves trivial R71.1800
R71.18′{286,143}22 / 1 / 143 143,286α' Faces share vertices with themselves Faces share edges with themselves trivial R71.18′(see ser α')0
R71.21{284,284}21 / 1 / 142 284,284β° Faces share vertices with themselves Faces share edges with themselves Vertices share edges with themselves trivial R71.2100

Other Regular Maps

General Index