Regular maps in the orientable surface of genus 77

NameSchläfliV / F / EmV, mFnotes C&D no.imageswire-
frames
C77.1{6,6}76152 / 152 / 456 1,2 replete Chiral C77.100
C77.1′{6,6}76152 / 152 / 456 2,1 replete Chiral C77.1′00
R77.1{4,42}8416 / 168 / 336 7,1 replete R77.100
R77.1′{42,4}84168 / 16 / 336 1,7 replete R77.1′00
R77.2{4,80}808 / 160 / 320 20,1 replete R77.200
R77.2′{80,4}80160 / 8 / 320 1,20 replete R77.2′00
R77.3{4,80}808 / 160 / 320 20,1 replete R77.300
R77.3′{80,4}80160 / 8 / 320 1,20 replete R77.3′00
R77.4{4,156}1564 / 156 / 312 78,2series m replete R77.4(see series m)0
R77.4′{156,4}156156 / 4 / 312 2,78series l replete R77.4′(see series l)0
R77.5{4,308}1542 / 154 / 308 308,2series h Faces share vertices with themselves R77.5(see series h)0
R77.5′{308,4}154154 / 2 / 308 2,308series j Faces share vertices with themselves R77.5′(see series j)0
R77.9{8,9}3664 / 72 / 288 3,1 replete R77.900
R77.9′{9,8}3672 / 64 / 288 1,3 replete R77.9′00
C77.2{6,15}19038 / 95 / 285 5,1 replete Chiral C77.200
C77.2′{15,6}19095 / 38 / 285 1,5 replete Chiral C77.2′00
R77.14{10,12}2040 / 48 / 240 4,2 replete R77.1400
R77.14′{12,10}2048 / 40 / 240 2,4 replete R77.14′00
R77.15{10,12}2040 / 48 / 240 4,1 replete R77.1500
R77.15′{12,10}2048 / 40 / 240 1,4 replete R77.15′00
R77.16{10,12}840 / 48 / 240 2,1 replete R77.1600
R77.16′{12,10}848 / 40 / 240 1,2 replete R77.16′00
R77.17{10,12}440 / 48 / 240 2,1 replete R77.1700
R77.17′{12,10}448 / 40 / 240 1,2 replete R77.17′00
R77.6{6,60}208 / 80 / 240 20,1 replete R77.600
R77.6′{60,6}2080 / 8 / 240 1,20 replete R77.6′00
R77.7{6,60}408 / 80 / 240 20,1 replete R77.700
R77.7′{60,6}4080 / 8 / 240 1,20 replete R77.7′00
R77.8{6,231}1542 / 77 / 231 231,3series p Faces share vertices with themselves R77.8(see series p)0
R77.8′{231,6}15477 / 2 / 231 3,231series q Faces share vertices with themselves R77.8′(see series q)0
C77.3{12,12}3838 / 38 / 228 2,4 replete Chiral C77.300
C77.3′{12,12}3838 / 38 / 228 4,2 replete Chiral C77.3′00
R77.10{8,28}5616 / 56 / 224 7,2 replete R77.1000
R77.10′{28,8}5656 / 16 / 224 2,7 replete R77.10′00
R77.11{8,28}2816 / 56 / 224 7,2 replete R77.1100
R77.11′{28,8}2856 / 16 / 224 2,7 replete R77.11′00
R77.12{8,104}524 / 52 / 208 52,4 replete R77.1200
R77.12′{104,8}5252 / 4 / 208 4,52 replete R77.12′00
R77.13{8,104}524 / 52 / 208 52,4 replete R77.1300
R77.13′{104,8}5252 / 4 / 208 4,52 replete R77.13′00
R77.22{16,24}4816 / 24 / 192 12,8 replete R77.2200
R77.22′{24,16}4824 / 16 / 192 8,12 replete R77.22′00
R77.23{16,24}4816 / 24 / 192 6,8 replete R77.2300
R77.23′{24,16}4824 / 16 / 192 8,6 replete R77.23′00
R77.24{16,24}4816 / 24 / 192 3,8 replete R77.2400
R77.24′{24,16}4824 / 16 / 192 8,3 replete R77.24′00
R77.25{16,24}4816 / 24 / 192 3,8 replete R77.2500
R77.25′{24,16}4824 / 16 / 192 8,3 replete R77.25′00
R77.26{16,24}4816 / 24 / 192 6,4 replete R77.2600
R77.26′{24,16}4824 / 16 / 192 4,6 replete R77.26′00
R77.27{16,24}4816 / 24 / 192 6,4 replete R77.2700
R77.27′{24,16}4824 / 16 / 192 4,6 replete R77.27′00
R77.28{16,24}4816 / 24 / 192 6,4 replete R77.2800
R77.28′{24,16}4824 / 16 / 192 4,6 replete R77.28′00
R77.29{16,24}4816 / 24 / 192 12,4 replete R77.2900
R77.29′{24,16}4824 / 16 / 192 4,12 replete R77.29′00
R77.18{12,48}168 / 32 / 192 16,2 replete R77.1800
R77.18′{48,12}1632 / 8 / 192 2,16 replete R77.18′00
R77.19{12,48}168 / 32 / 192 16,2 replete R77.1900
R77.19′{48,12}1632 / 8 / 192 2,16 replete R77.19′00
R77.20{12,48}168 / 32 / 192 12,3 replete R77.2000
R77.20′{48,12}1632 / 8 / 192 3,12 replete R77.20′00
R77.21{12,48}168 / 32 / 192 12,3 replete R77.2100
R77.21′{48,12}1632 / 8 / 192 3,12 replete R77.21′00
R77.33{20,36}9010 / 18 / 180 18,10 replete R77.3300
R77.33′{36,20}9018 / 10 / 180 10,18 replete R77.33′00
R77.32{18,45}208 / 20 / 180 15,3 replete R77.3200
R77.32′{45,18}2020 / 8 / 180 3,15 replete R77.32′00
R77.30{16,176}222 / 22 / 176 176,8 R77.3000
R77.30′{176,16}2222 / 2 / 176 8,176 R77.30′00
R77.31{16,176}442 / 22 / 176 176,8 R77.3100
R77.31′{176,16}4422 / 2 / 176 8,176 R77.31′00
C77.4{42,42}48 / 8 / 168 6,6 replete Chiral C77.400
C77.4′{42,42}48 / 8 / 168 6,6 replete Chiral C77.4′00
R77.38{42,42}48 / 8 / 168 14,14 replete R77.3800
R77.36{28,84}124 / 12 / 168 42,14 replete R77.3600
R77.36′{84,28}1212 / 4 / 168 14,42 replete R77.36′00
R77.34{24,168}142 / 14 / 168 168,12 R77.3400
R77.34′{168,24}1414 / 2 / 168 12,168 R77.34′00
R77.35{24,168}282 / 14 / 168 168,12 R77.3500
R77.35′{168,24}2814 / 2 / 168 12,168 R77.35′00
R77.37{30,165}222 / 11 / 165 165,15 R77.3700
R77.37′{165,30}2211 / 2 / 165 15,165 R77.37′00
R77.39{46,161}142 / 7 / 161 161,23 R77.3900
R77.39′{161,46}147 / 2 / 161 23,161 R77.39′00
R77.40{80,80}44 / 4 / 160 40,40 replete R77.4000
R77.41{80,80}84 / 4 / 160 40,40 replete R77.4100
R77.41′{80,80}84 / 4 / 160 40,40 replete R77.41′00
R77.42{80,80}44 / 4 / 160 40,40 replete R77.4200
R77.44{156,156}22 / 2 / 156 156,156series k trivial Faces share vertices with themselves R77.44(see series k)0
R77.43{155,310}21 / 2 / 155 310,155series z trivial Faces share vertices with themselves Vertices share edges with themselves R77.43(see series z)0
R77.43′{310,155}22 / 1 / 155 155,310series i trivial Faces share vertices with themselves Faces share edges with themselves R77.43′(see series i)0
R77.45{308,308}21 / 1 / 154 308,308series s trivial Faces share edges with themselves Faces share vertices with themselves Vertices share edges with themselves R77.45(see series s)0

Other Regular Maps

General Index