Regular maps in the orientable surface of genus 85

NameSchläfliV / F / EmV, mFnotes C&D no.imageswire-
frames
R85.1{3,8}42504 / 1344 / 2016 1,1 replete singular R85.100
R85.1′{8,3}421344 / 504 / 2016 1,1 replete singular R85.1′00
R85.2{3,8}24504 / 1344 / 2016 1,1 replete singular R85.200
R85.2′{8,3}241344 / 504 / 2016 1,1 replete singular R85.2′00
R85.6{4,6}24336 / 504 / 1008 1,1 replete singular R85.600
R85.6′{6,4}24504 / 336 / 1008 1,1 replete singular R85.6′00
C85.1{3,12}84168 / 672 / 1008 1,1 replete singular Chiral C85.100
C85.1′{12,3}84672 / 168 / 1008 1,1 replete singular Chiral C85.1′00
R85.3{3,20}3072 / 480 / 720 1,1 replete singular R85.300
R85.3′{20,3}30480 / 72 / 720 1,1 replete singular R85.3′00
R85.10{4,8}12168 / 336 / 672 1,1 replete singular R85.1000
R85.10′{8,4}12336 / 168 / 672 1,1 replete singular R85.10′00
R85.11{4,8}12168 / 336 / 672 1,1 replete singular R85.1100
R85.11′{8,4}12336 / 168 / 672 1,1 replete singular R85.11′00
R85.12{4,8}6168 / 336 / 672 1,1 replete singular R85.1200
R85.12′{8,4}6336 / 168 / 672 1,1 replete singular R85.12′00
R85.7{4,8}28168 / 336 / 672 1,1 replete singular R85.700
R85.7′{8,4}28336 / 168 / 672 1,1 replete singular R85.7′00
R85.8{4,8}28168 / 336 / 672 1,1 replete singular R85.800
R85.8′{8,4}28336 / 168 / 672 1,1 replete singular R85.8′00
R85.9{4,8}14168 / 336 / 672 1,1 replete singular R85.900
R85.9′{8,4}14336 / 168 / 672 1,1 replete singular R85.9′00
R85.4{3,48}624 / 384 / 576 3,1 replete R85.400
R85.4′{48,3}6384 / 24 / 576 1,3 replete R85.4′00
R85.5{3,48}2424 / 384 / 576 6,1 replete R85.500
R85.5′{48,3}24384 / 24 / 576 1,6 replete R85.5′00
C85.2{6,6}84168 / 168 / 504 1,1 replete singular Chiral C85.200
C85.2′{6,6}84168 / 168 / 504 1,1 replete singular Chiral C85.2′00
C85.3{6,6}84168 / 168 / 504 2,1 replete Chiral C85.300
C85.3′{6,6}84168 / 168 / 504 1,2 replete Chiral C85.3′00
R85.20{6,6}8168 / 168 / 504 1,1 replete singular R85.2000
R85.13{4,25}5032 / 200 / 400 5,1 replete R85.1300
R85.13′{25,4}50200 / 32 / 400 1,5 replete R85.13′00
R85.14{4,28}428 / 196 / 392 2,1λ replete R85.1400
R85.14′{28,4}4196 / 28 / 392 1,2λ' replete R85.14′(see ser λ')0
R85.21{6,10}3072 / 120 / 360 1,2 replete R85.2100
R85.21′{10,6}30120 / 72 / 360 2,1 replete R85.21′00
R85.22{6,10}1272 / 120 / 360 1,1 replete singular R85.2200
R85.22′{10,6}12120 / 72 / 360 1,1 replete singular R85.22′00
R85.15{4,60}2012 / 180 / 360 10,1 replete R85.1500
R85.15′{60,4}20180 / 12 / 360 1,10 replete R85.15′00
R85.16{4,88}888 / 176 / 352 22,1 replete R85.1600
R85.16′{88,4}88176 / 8 / 352 1,22 replete R85.16′00
R85.17{4,88}448 / 176 / 352 22,1 replete R85.1700
R85.17′{88,4}44176 / 8 / 352 1,22 replete R85.17′00
R85.18{4,172}1724 / 172 / 344 86,2θ replete R85.1800
R85.18′{172,4}172172 / 4 / 344 2,86θ' replete R85.18′(see ser θ')0
R85.19{4,340}1702 / 170 / 340 340,2ζ'°' Faces share vertices with themselves R85.1900
R85.19′{340,4}170170 / 2 / 340 2,340ζ'° Faces share vertices with themselves R85.19′(see ser ζ'°)0
R85.41{8,8}684 / 84 / 336 1,1 replete singular R85.4100
R85.42{8,8}684 / 84 / 336 1,1 replete singular R85.4200
R85.43{8,8}684 / 84 / 336 1,1 replete singular R85.4300
R85.44{8,8}884 / 84 / 336 1,1 replete singular R85.4400
R85.45{8,8}884 / 84 / 336 1,1 replete singular R85.4500
R85.46{8,8}884 / 84 / 336 1,1 replete singular R85.4600
C85.4{6,12}5656 / 112 / 336 2,2 replete Chiral C85.400
C85.4′{12,6}56112 / 56 / 336 2,2 replete Chiral C85.4′00
C85.5{6,12}2856 / 112 / 336 2,1 replete Chiral C85.500
C85.5′{12,6}28112 / 56 / 336 1,2 replete Chiral C85.5′00
C85.6{6,12}5656 / 112 / 336 4,1 replete Chiral C85.600
C85.6′{12,6}56112 / 56 / 336 1,4 replete Chiral C85.6′00
C85.7{6,12}2856 / 112 / 336 4,1 replete Chiral C85.700
C85.7′{12,6}28112 / 56 / 336 1,4 replete Chiral C85.7′00
C85.8{6,15}21042 / 105 / 315 5,1 replete Chiral C85.800
C85.8′{15,6}210105 / 42 / 315 1,5 replete Chiral C85.8′00
R85.47{8,12}848 / 72 / 288 1,2 replete R85.4700
R85.47′{12,8}872 / 48 / 288 2,1 replete R85.47′00
R85.48{8,12}448 / 72 / 288 1,2 replete R85.4800
R85.48′{12,8}472 / 48 / 288 2,1 replete R85.48′00
R85.23{6,24}2424 / 96 / 288 2,2 replete R85.2300
R85.23′{24,6}2496 / 24 / 288 2,2 replete R85.23′00
R85.24{6,24}1224 / 96 / 288 2,2 replete R85.2400
R85.24′{24,6}1296 / 24 / 288 2,2 replete R85.24′00
R85.25{6,24}1224 / 96 / 288 4,1 replete R85.2500
R85.25′{24,6}1296 / 24 / 288 1,4 replete R85.25′00
R85.26{6,24}2424 / 96 / 288 4,1 replete R85.2600
R85.26′{24,6}2496 / 24 / 288 1,4 replete R85.26′00
R85.27{6,24}1224 / 96 / 288 3,2 replete R85.2700
R85.27′{24,6}1296 / 24 / 288 2,3 replete R85.27′00
R85.28{6,24}624 / 96 / 288 3,2 replete R85.2800
R85.28′{24,6}696 / 24 / 288 2,3 replete R85.28′00
R85.29{6,24}624 / 96 / 288 3,1 replete R85.2900
R85.29′{24,6}696 / 24 / 288 1,3 replete R85.29′00
R85.30{6,24}1224 / 96 / 288 6,1 replete R85.3000
R85.30′{24,6}1296 / 24 / 288 1,6 replete R85.30′00
R85.31{6,24}2424 / 96 / 288 6,1 replete R85.3100
R85.31′{24,6}2496 / 24 / 288 1,6 replete R85.31′00
R85.32{6,24}2424 / 96 / 288 8,1 replete R85.3200
R85.32′{24,6}2496 / 24 / 288 1,8 replete R85.32′00
R85.33{6,24}1224 / 96 / 288 8,1 replete R85.3300
R85.33′{24,6}1296 / 24 / 288 1,8 replete R85.33′00
R85.34{6,24}624 / 96 / 288 3,1 replete R85.3400
R85.34′{24,6}696 / 24 / 288 1,3 replete R85.34′00
R85.35{6,24}624 / 96 / 288 3,1 replete R85.3500
R85.35′{24,6}696 / 24 / 288 1,3 replete R85.35′00
R85.36{6,24}2424 / 96 / 288 6,1 replete R85.3600
R85.36′{24,6}2496 / 24 / 288 1,6 replete R85.36′00
R85.37{6,24}1224 / 96 / 288 6,1 replete R85.3700
R85.37′{24,6}1296 / 24 / 288 1,6 replete R85.37′00
C85.9{6,39}18214 / 91 / 273 13,1 replete Chiral C85.900
C85.9′{39,6}18291 / 14 / 273 1,13 replete Chiral C85.9′00
R85.38{6,66}448 / 88 / 264 22,1 replete R85.3800
R85.38′{66,6}4488 / 8 / 264 1,22 replete R85.38′00
R85.39{6,87}1746 / 87 / 261 29,3 replete R85.3900
R85.39′{87,6}17487 / 6 / 261 3,29 replete R85.39′00
R85.40{6,255}1702 / 85 / 255 255,3δ Faces share vertices with themselves R85.4000
R85.40′{255,6}17085 / 2 / 255 3,255δ' Faces share vertices with themselves R85.40′(see ser δ')0
C85.11{12,12}4242 / 42 / 252 2,4 replete Chiral C85.1100
C85.11′{12,12}4242 / 42 / 252 4,2 replete Chiral C85.11′00
C85.12{12,12}4242 / 42 / 252 2,2 replete Chiral C85.1200
C85.12′{12,12}4242 / 42 / 252 2,2 replete Chiral C85.12′00
C85.10{9,18}2828 / 56 / 252 3,3 replete Chiral C85.1000
C85.10′{18,9}2856 / 28 / 252 3,3 replete Chiral C85.10′00
R85.51{12,15}1032 / 40 / 240 3,3 replete R85.5100
R85.51′{15,12}1040 / 32 / 240 3,3 replete R85.51′00
R85.49{10,20}1224 / 48 / 240 4,2 replete R85.4900
R85.49′{20,10}1248 / 24 / 240 2,4 replete R85.49′00
R85.50{10,20}1224 / 48 / 240 4,1 replete R85.5000
R85.50′{20,10}1248 / 24 / 240 1,4 replete R85.50′00
R85.55{18,18}1224 / 24 / 216 6,3 replete R85.5500
R85.55′{18,18}1224 / 24 / 216 3,6 replete R85.55′00
C85.13{12,36}3612 / 36 / 216 6,2 replete Chiral C85.1300
C85.13′{36,12}3636 / 12 / 216 2,6 replete Chiral C85.13′00
R85.52{12,36}3612 / 36 / 216 18,6 replete R85.5200
R85.52′{36,12}3636 / 12 / 216 6,18 replete R85.52′00
R85.53{12,36}3612 / 36 / 216 6,6 replete R85.5300
R85.53′{36,12}3636 / 12 / 216 6,6 replete R85.53′00
R85.54{12,204}342 / 34 / 204 204,6 R85.5400
R85.54′{204,12}3434 / 2 / 204 6,204 R85.54′00
R85.65{25,25}416 / 16 / 200 5,5 replete R85.6500
R85.66{28,28}1414 / 14 / 196 14,4 replete R85.6600
R85.66′{28,28}1414 / 14 / 196 4,14 replete R85.66′00
R85.67{28,28}1414 / 14 / 196 14,14 replete R85.6700
R85.57{24,48}168 / 16 / 192 24,6 replete R85.5700
R85.57′{48,24}1616 / 8 / 192 6,24 replete R85.57′00
R85.58{24,48}168 / 16 / 192 24,12 replete R85.5800
R85.58′{48,24}1616 / 8 / 192 12,24 replete R85.58′00
R85.59{24,48}168 / 16 / 192 24,3 replete R85.5900
R85.59′{48,24}1616 / 8 / 192 3,24 replete R85.59′00
R85.60{24,48}168 / 16 / 192 24,3 replete R85.6000
R85.60′{48,24}1616 / 8 / 192 3,24 replete R85.60′00
R85.61{24,48}168 / 16 / 192 12,6 replete R85.6100
R85.61′{48,24}1616 / 8 / 192 6,12 replete R85.61′00
R85.62{24,48}168 / 16 / 192 12,6 replete R85.6200
R85.62′{48,24}1616 / 8 / 192 6,12 replete R85.62′00
R85.63{24,48}168 / 16 / 192 12,12 replete R85.6300
R85.63′{48,24}1616 / 8 / 192 12,12 replete R85.63′00
R85.64{24,48}168 / 16 / 192 12,6 replete R85.6400
R85.64′{48,24}1616 / 8 / 192 6,12 replete R85.64′00
C85.14{27,54}147 / 14 / 189 9,9 replete Chiral C85.1400
C85.14′{54,27}1414 / 7 / 189 9,9 replete Chiral C85.14′00
R85.56{22,187}342 / 17 / 187 187,11 R85.5600
R85.56′{187,22}3417 / 2 / 187 11,187 R85.56′00
R85.70{60,60}66 / 6 / 180 20,30 replete R85.7000
R85.70′{60,60}66 / 6 / 180 30,20 replete R85.70′00
R85.71{60,60}66 / 6 / 180 30,30 replete R85.7100
R85.69{45,90}44 / 8 / 180 30,15 replete R85.6900
R85.69′{90,45}48 / 4 / 180 15,30 replete R85.69′00
R85.68{36,180}102 / 10 / 180 180,18 R85.6800
R85.68′{180,36}1010 / 2 / 180 18,180 R85.68′00
R85.72{88,88}44 / 4 / 176 44,44 replete R85.7200
R85.73{88,88}44 / 4 / 176 44,44 replete R85.7300
R85.75{172,172}22 / 2 / 172 172,172γ trivial Faces share vertices with themselves R85.7500
R85.74{171,342}21 / 2 / 171 342,171α trivial Faces share vertices with themselves Vertices share edges with themselves R85.7400
R85.74′{342,171}22 / 1 / 171 171,342α' trivial Faces share vertices with themselves Faces share edges with themselves R85.74′(see ser α')0
R85.76{340,340}21 / 1 / 170 340,340β trivial Faces share edges with themselves Faces share vertices with themselves Vertices share edges with themselves R85.7600

Other Regular Maps

General Index