Regular maps in the orientable surface of genus 88

NameSchläfliV / F / EmV, mFnotes C&D no.imageswire-
frames
R88.1{4,178}3564 / 178 / 356 89,2series m replete R88.1(see series m)0
R88.1′{178,4}356178 / 4 / 356 2,89series l replete R88.1′(see series l)0
R88.2{4,352}3522 / 176 / 352 352,2series h Faces share vertices with themselves R88.2(see series h)0
R88.2′{352,4}352176 / 2 / 352 2,352series j Faces share vertices with themselves R88.2′(see series j)0
R88.3{6,32}3218 / 96 / 288 8,1 replete R88.300
R88.3′{32,6}3296 / 18 / 288 1,8 replete R88.3′00
C88.1{6,90}906 / 90 / 270 30,1 replete Chiral C88.100
C88.1′{90,6}9090 / 6 / 270 1,30 replete Chiral C88.1′00
R88.4{6,90}906 / 90 / 270 30,3 replete R88.400
R88.4′{90,6}9090 / 6 / 270 3,30 replete R88.4′00
R88.5{6,90}906 / 90 / 270 45,3 replete R88.500
R88.5′{90,6}9090 / 6 / 270 3,45 replete R88.5′00
R88.6{6,264}882 / 88 / 264 264,3series p Faces share vertices with themselves R88.6(see series p)0
R88.6′{264,6}8888 / 2 / 264 3,264series q Faces share vertices with themselves R88.6′(see series q)0
R88.7{10,46}23010 / 46 / 230 23,5 replete R88.700
R88.7′{46,10}23046 / 10 / 230 5,23 replete R88.7′00
R88.8{10,220}442 / 44 / 220 220,5 R88.800
R88.8′{220,10}4444 / 2 / 220 5,220 R88.8′00
C88.3{18,24}7218 / 24 / 216 4,3 replete Chiral C88.300
C88.3′{24,18}7224 / 18 / 216 3,4 replete Chiral C88.3′00
C88.4{18,24}3618 / 24 / 216 2,6 replete Chiral C88.400
C88.4′{24,18}3624 / 18 / 216 6,2 replete Chiral C88.4′00
R88.12{18,24}7218 / 24 / 216 12,3 replete R88.1200
R88.12′{24,18}7224 / 18 / 216 3,12 replete R88.12′00
R88.13{18,24}7218 / 24 / 216 12,9 replete R88.1300
R88.13′{24,18}7224 / 18 / 216 9,12 replete R88.13′00
R88.14{18,24}3618 / 24 / 216 6,6 replete R88.1400
R88.14′{24,18}3624 / 18 / 216 6,6 replete R88.14′00
C88.2{12,72}726 / 36 / 216 24,2 replete Chiral C88.200
C88.2′{72,12}7236 / 6 / 216 2,24 replete Chiral C88.2′00
R88.10{12,72}726 / 36 / 216 36,6 replete R88.1000
R88.10′{72,12}7236 / 6 / 216 6,36 replete R88.10′00
R88.9{12,72}726 / 36 / 216 24,6 replete R88.900
R88.9′{72,12}7236 / 6 / 216 6,24 replete R88.9′00
R88.11{16,52}2088 / 26 / 208 26,8 replete R88.1100
R88.11′{52,16}20826 / 8 / 208 8,26 replete R88.11′00
R88.15{18,198}222 / 22 / 198 198,9 R88.1500
R88.15′{198,18}2222 / 2 / 198 9,198 R88.15′00
C88.5{42,63}186 / 9 / 189 21,7 replete Chiral C88.500
C88.5′{63,42}189 / 6 / 189 7,21 replete Chiral C88.5′00
R88.17{42,63}186 / 9 / 189 21,21 replete R88.1700
R88.17′{63,42}189 / 6 / 189 21,21 replete R88.17′00
R88.16{34,187}222 / 11 / 187 187,17 R88.1600
R88.16′{187,34}2211 / 2 / 187 17,187 R88.16′00
R88.18{46,184}82 / 8 / 184 184,23 R88.1800
R88.18′{184,46}88 / 2 / 184 23,184 R88.18′00
R88.19{90,180}42 / 4 / 180 180,45 R88.1900
R88.19′{180,90}44 / 2 / 180 45,180 R88.19′00
R88.21{178,178}22 / 2 / 178 178,178series k trivial Faces share vertices with themselves R88.21(see series k)0
R88.20{177,354}21 / 2 / 177 354,177series z trivial Faces share vertices with themselves Vertices share edges with themselves R88.20(see series z)0
R88.20′{354,177}22 / 1 / 177 177,354series i trivial Faces share vertices with themselves Faces share edges with themselves R88.20′(see series i)0
R88.22{352,352}21 / 1 / 176 352,352series s trivial Faces share edges with themselves Faces share vertices with themselves Vertices share edges with themselves R88.22(see series s)0

Other Regular Maps

General Index