Regular maps in the orientable surface of genus 9

NameSchläfliV / F / EmV, mFnotes C&D no.imageswire-
frames
R9.2{4,5}2064 / 80 / 160 1,1 replete singular R9.200
R9.2′{5,4}2080 / 64 / 160 1,1 replete singular R9.2′00
R9.3{4,6}2432 / 48 / 96 1,1 replete singular R9.30 1
R9.3′{6,4}2448 / 32 / 96 1,1 replete singular R9.3′0 1
R9.4{4,6}632 / 48 / 96 1,1 replete singular R9.400
R9.4′{6,4}648 / 32 / 96 1,1 replete singular R9.4′00
R9.1{3,12}816 / 64 / 96 2,1 replete R9.100
R9.1′{12,3}864 / 16 / 96 1,2 replete R9.1′00
R9.14{5,5}832 / 32 / 80 1,1 replete singular R9.1400
R9.5{4,8}816 / 32 / 64 1,1 replete singular R9.50 1
R9.5′{8,4}832 / 16 / 64 1,1 replete singular R9.5′0 1
R9.6{4,8}416 / 32 / 64 1,1 replete singular R9.600
R9.6′{8,4}432 / 16 / 64 1,1 replete singular R9.6′00
R9.7{4,8}816 / 32 / 64 2,1 replete R9.700
R9.7′{8,4}832 / 16 / 64 1,2 replete R9.7′00
R9.8{4,8}816 / 32 / 64 2,1 replete R9.800
R9.8′{8,4}832 / 16 / 64 1,2 replete R9.8′00
R9.15{5,6}1020 / 24 / 60 2,1 replete R9.1500
R9.15′{6,5}1024 / 20 / 60 1,2 replete R9.15′00
R9.16{5,6}420 / 24 / 60 1,1 replete singular R9.1600
R9.16′{6,5}424 / 20 / 60 1,1 replete singular R9.16′00
R9.17{6,6}816 / 16 / 48 1,1 replete singular R9.1700
R9.18{6,6}416 / 16 / 48 1,1 replete singular R9.1800
R9.10{4,12}128 / 24 / 48 3,1 replete R9.1000
R9.10′{12,4}1224 / 8 / 48 1,3 replete R9.10′00
R9.11{4,12}128 / 24 / 48 4,1 replete R9.1100
R9.11′{12,4}1224 / 8 / 48 1,4 replete R9.11′00
R9.9{4,12}68 / 24 / 48 4,1 replete R9.900
R9.9′{12,4}624 / 8 / 48 1,4 replete R9.9′00
R9.12{4,20}204 / 20 / 40 10,2series m replete R9.12(see series m) 2
R9.12′{20,4}2020 / 4 / 40 2,10series l replete R9.12′1 2
R9.13{4,36}182 / 18 / 36 36,2series h Faces share vertices with themselves is not a polyhedral map R9.1310
R9.13′{36,4}1818 / 2 / 36 2,36series j Faces share vertices with themselves is not a polyhedral map R9.13′(see series j)0
R9.19{8,8}88 / 8 / 32 4,4 replete is not a polyhedral map R9.1900
R9.20{8,8}88 / 8 / 32 2,4 replete is not a polyhedral map R9.2000
R9.20′{8,8}88 / 8 / 32 4,2 replete is not a polyhedral map R9.20′00
R9.21{8,8}88 / 8 / 32 2,2 replete is not a polyhedral map R9.2100
R9.22{8,8}48 / 8 / 32 2,2 replete is not a polyhedral map R9.220 1
R9.23{8,8}88 / 8 / 32 2,2 replete is not a polyhedral map R9.2300
R9.26{12,12}44 / 4 / 24 4,4 replete is not a polyhedral map R9.260 1
R9.27{12,12}44 / 4 / 24 4,4 replete is not a polyhedral map R9.2700
R9.28{12,12}44 / 4 / 24 6,6 replete is not a polyhedral map R9.2800
R9.24{8,24}122 / 6 / 24 24,4 is not a polyhedral map R9.2410
R9.24′{24,8}126 / 2 / 24 4,24 is not a polyhedral map R9.24′00
R9.25{8,24}62 / 6 / 24 24,4 is not a polyhedral map R9.2510
R9.25′{24,8}66 / 2 / 24 4,24 is not a polyhedral map R9.25′00
R9.29{14,21}62 / 3 / 21 21,7 is not a polyhedral map R9.2910
R9.29′{21,14}63 / 2 / 21 7,21 is not a polyhedral map R9.29′10
R9.31{20,20}22 / 2 / 20 20,20series k trivial Faces share vertices with themselves is not a polyhedral map R9.311 1
R9.30{19,38}21 / 2 / 19 38,19series z trivial Faces share vertices with themselves Vertices share edges with themselves is not a polyhedral map R9.30(see series z)0
R9.30′{38,19}22 / 1 / 19 19,38series i trivial Faces share vertices with themselves Faces share edges with themselves is not a polyhedral map R9.30′10
R9.32{36,36}21 / 1 / 18 36,36series s trivial Faces share edges with themselves Faces share vertices with themselves Vertices share edges with themselves is not a polyhedral map R9.32(see series s)0

Other Regular Maps

General Index