Regular maps in the orientable surface of genus 90

NameSchläfliV / F / EmV, mFnotes C&D no.imageswire-
frames
R90.1{4,93}1868 / 186 / 372 31,1 replete R90.100
R90.1′{93,4}186186 / 8 / 372 1,31 replete R90.1′00
R90.2{4,182}3644 / 182 / 364 91,2series m replete R90.2(see series m)0
R90.2′{182,4}364182 / 4 / 364 2,91series l replete R90.2′(see series l)0
R90.3{4,360}3602 / 180 / 360 360,2series h Faces share vertices with themselves R90.3(see series h)0
R90.3′{360,4}360180 / 2 / 360 2,360series j Faces share vertices with themselves R90.3′(see series j)0
C90.1{8,8}17889 / 89 / 356 1,1 replete singular Chiral C90.100
C90.1′{8,8}17889 / 89 / 356 1,1 replete singular Chiral C90.1′00
R90.4{6,92}2766 / 92 / 276 46,3 replete R90.400
R90.4′{92,6}27692 / 6 / 276 3,46 replete R90.4′00
R90.5{8,62}2488 / 62 / 248 31,4 replete R90.500
R90.5′{62,8}24862 / 8 / 248 4,31 replete R90.5′00
R90.6{12,38}22812 / 38 / 228 19,6 replete R90.600
R90.6′{38,12}22838 / 12 / 228 6,19 replete R90.6′00
R90.7{14,32}22414 / 32 / 224 16,7 replete R90.700
R90.7′{32,14}22432 / 14 / 224 7,16 replete R90.7′00
R90.9{20,22}22020 / 22 / 220 11,10 replete R90.900
R90.9′{22,20}22022 / 20 / 220 10,11 replete R90.9′00
R90.10{21,35}1012 / 20 / 210 7,7 replete R90.1000
R90.10′{35,21}1020 / 12 / 210 7,7 replete R90.10′00
R90.8{14,210}302 / 30 / 210 210,7 R90.800
R90.8′{210,14}3030 / 2 / 210 7,210 R90.8′00
R90.11{22,198}182 / 18 / 198 198,11 R90.1100
R90.11′{198,22}1818 / 2 / 198 11,198 R90.11′00
R90.12{26,195}302 / 15 / 195 195,13 R90.1200
R90.12′{195,26}3015 / 2 / 195 13,195 R90.12′00
R90.13{38,190}102 / 10 / 190 190,19 R90.1300
R90.13′{190,38}1010 / 2 / 190 19,190 R90.13′00
R90.17{93,93}44 / 4 / 186 31,31 replete R90.1700
R90.14{62,186}62 / 6 / 186 186,31 R90.1400
R90.14′{186,62}66 / 2 / 186 31,186 R90.14′00
R90.15{74,185}102 / 5 / 185 185,37 R90.1500
R90.15′{185,74}105 / 2 / 185 37,185 R90.15′00
R90.16{92,184}82 / 4 / 184 184,46 R90.1600
R90.16′{184,92}84 / 2 / 184 46,184 R90.16′00
R90.18{122,183}62 / 3 / 183 183,61 R90.1800
R90.18′{183,122}63 / 2 / 183 61,183 R90.18′00
R90.20{182,182}22 / 2 / 182 182,182series k trivial Faces share vertices with themselves R90.20(see series k)0
R90.19{181,362}21 / 2 / 181 362,181series z trivial Faces share vertices with themselves Vertices share edges with themselves R90.19(see series z)0
R90.19′{362,181}22 / 1 / 181 181,362series i trivial Faces share vertices with themselves Faces share edges with themselves R90.19′(see series i)0
R90.21{360,360}21 / 1 / 180 360,360series s trivial Faces share edges with themselves Faces share vertices with themselves Vertices share edges with themselves R90.21(see series s)0

Other Regular Maps

General Index