Regular maps in the orientable surface of genus 91

NameSchläfliV / F / EmV, mFnotes C&D no.imageswire-
frames
R91.5{4,5}40720 / 900 / 1800 1,1 replete singular R91.500
R91.5′{5,4}40900 / 720 / 1800 1,1 replete singular R91.5′00
R91.29{5,5}10360 / 360 / 900 1,1 replete singular R91.2900
R91.1{3,21}1872 / 504 / 756 3,1 replete R91.100
R91.1′{21,3}18504 / 72 / 756 1,3 replete R91.1′00
C91.1{4,8}40180 / 360 / 720 1,1 replete singular Chiral C91.100
C91.1′{8,4}40360 / 180 / 720 1,1 replete singular Chiral C91.1′00
C91.2{4,8}40180 / 360 / 720 1,1 replete singular Chiral C91.200
C91.2′{8,4}40360 / 180 / 720 1,1 replete singular Chiral C91.2′00
C91.3{4,8}120180 / 360 / 720 2,1 replete Chiral C91.300
C91.3′{8,4}120360 / 180 / 720 1,2 replete Chiral C91.3′00
C91.4{4,8}120180 / 360 / 720 2,1 replete Chiral C91.400
C91.4′{8,4}120360 / 180 / 720 1,2 replete Chiral C91.4′00
R91.10{4,8}8180 / 360 / 720 1,1 replete singular R91.1000
R91.10′{8,4}8360 / 180 / 720 1,1 replete singular R91.10′00
R91.11{4,8}6180 / 360 / 720 1,1 replete singular R91.1100
R91.11′{8,4}6360 / 180 / 720 1,1 replete singular R91.11′00
R91.12{4,8}6180 / 360 / 720 1,1 replete singular R91.1200
R91.12′{8,4}6360 / 180 / 720 1,1 replete singular R91.12′00
R91.13{4,8}6180 / 360 / 720 1,1 replete singular R91.1300
R91.13′{8,4}6360 / 180 / 720 1,1 replete singular R91.13′00
R91.6{4,8}10180 / 360 / 720 1,1 replete singular R91.600
R91.6′{8,4}10360 / 180 / 720 1,1 replete singular R91.6′00
R91.7{4,8}10180 / 360 / 720 1,1 replete singular R91.700
R91.7′{8,4}10360 / 180 / 720 1,1 replete singular R91.7′00
R91.8{4,8}10180 / 360 / 720 1,1 replete singular R91.800
R91.8′{8,4}10360 / 180 / 720 1,1 replete singular R91.8′00
R91.9{4,8}10180 / 360 / 720 1,1 replete singular R91.900
R91.9′{8,4}10360 / 180 / 720 1,1 replete singular R91.9′00
R91.2{3,30}645 / 450 / 675 1,1 replete singular R91.200
R91.2′{30,3}6450 / 45 / 675 1,1 replete singular R91.2′00
R91.3{3,36}2436 / 432 / 648 4,1 replete R91.300
R91.3′{36,3}24432 / 36 / 648 1,4 replete R91.3′00
R91.4{3,36}2436 / 432 / 648 6,1 replete R91.400
R91.4′{36,3}24432 / 36 / 648 1,6 replete R91.4′00
R91.14{4,10}30120 / 300 / 600 2,1 replete R91.1400
R91.14′{10,4}30300 / 120 / 600 1,2 replete R91.14′00
C91.5{4,12}3090 / 270 / 540 3,1 replete Chiral C91.500
C91.5′{12,4}30270 / 90 / 540 1,3 replete Chiral C91.5′00
C91.6{4,12}3090 / 270 / 540 3,1 replete Chiral C91.600
C91.6′{12,4}30270 / 90 / 540 1,3 replete Chiral C91.6′00
C91.11{6,8}12108 / 144 / 432 1,2 replete Chiral C91.1100
C91.11′{8,6}12144 / 108 / 432 2,1 replete Chiral C91.11′00
C91.12{6,8}12108 / 144 / 432 1,1 replete singular Chiral C91.1200
C91.12′{8,6}12144 / 108 / 432 1,1 replete singular Chiral C91.12′00
C91.7{4,24}2436 / 216 / 432 3,1 replete Chiral C91.700
C91.7′{24,4}24216 / 36 / 432 1,3 replete Chiral C91.7′00
R91.15{4,24}2436 / 216 / 432 6,1 replete R91.1500
R91.15′{24,4}24216 / 36 / 432 1,6 replete R91.15′00
R91.16{4,24}2436 / 216 / 432 4,1 replete R91.1600
R91.16′{24,4}24216 / 36 / 432 1,4 replete R91.16′00
R91.17{4,24}2436 / 216 / 432 6,1 replete R91.1700
R91.17′{24,4}24216 / 36 / 432 1,6 replete R91.17′00
R91.18{4,24}2436 / 216 / 432 4,1 replete R91.1800
R91.18′{24,4}24216 / 36 / 432 1,4 replete R91.18′00
R91.19{4,24}2436 / 216 / 432 6,1 replete R91.1900
R91.19′{24,4}24216 / 36 / 432 1,6 replete R91.19′00
R91.20{4,24}2436 / 216 / 432 6,1 replete R91.2000
R91.20′{24,4}24216 / 36 / 432 1,6 replete R91.20′00
R91.21{4,24}2436 / 216 / 432 4,1 replete R91.2100
R91.21′{24,4}24216 / 36 / 432 1,4 replete R91.21′00
R91.22{4,24}2436 / 216 / 432 4,1 replete R91.2200
R91.22′{24,4}24216 / 36 / 432 1,4 replete R91.22′00
C91.8{4,40}4020 / 200 / 400 10,1 replete Chiral C91.800
C91.8′{40,4}40200 / 20 / 400 1,10 replete Chiral C91.8′00
C91.9{4,40}4020 / 200 / 400 10,1 replete Chiral C91.900
C91.9′{40,4}40200 / 20 / 400 1,10 replete Chiral C91.9′00
R91.23{4,40}820 / 200 / 400 4,1 replete R91.2300
R91.23′{40,4}8200 / 20 / 400 1,4 replete R91.23′00
R91.24{4,40}820 / 200 / 400 4,1 replete R91.2400
R91.24′{40,4}8200 / 20 / 400 1,4 replete R91.24′00
R91.25{4,44}6618 / 198 / 396 11,1 replete R91.2500
R91.25′{44,4}66198 / 18 / 396 1,11 replete R91.25′00
C91.10{4,76}19010 / 190 / 380 19,1 replete Chiral C91.1000
C91.10′{76,4}190190 / 10 / 380 1,19 replete Chiral C91.10′00
R91.26{4,184}1844 / 184 / 368 92,2series m replete R91.26(see series m)0
R91.26′{184,4}184184 / 4 / 368 2,92series l replete R91.26′(see series l)0
R91.27{4,184}1844 / 184 / 368 92,1 replete R91.2700
R91.27′{184,4}184184 / 4 / 368 1,92 replete R91.27′00
R91.28{4,364}1822 / 182 / 364 364,2series h Faces share vertices with themselves R91.28(see series h)0
R91.28′{364,4}182182 / 2 / 364 2,364series j Faces share vertices with themselves R91.28′(see series j)0
C91.13{8,8}3090 / 90 / 360 1,1 replete singular Chiral C91.1300
C91.14{8,8}3090 / 90 / 360 1,1 replete singular Chiral C91.1400
C91.15{8,8}3090 / 90 / 360 2,2 replete Chiral C91.1500
C91.16{8,8}6090 / 90 / 360 2,2 replete Chiral C91.1600
R91.36{8,8}490 / 90 / 360 1,1 replete singular R91.3600
R91.37{8,8}890 / 90 / 360 1,1 replete singular R91.3700
R91.38{8,8}1090 / 90 / 360 1,1 replete singular R91.3800
R91.39{8,8}1090 / 90 / 360 1,1 replete singular R91.3900
R91.30{6,12}3060 / 120 / 360 3,1 replete R91.3000
R91.30′{12,6}30120 / 60 / 360 1,3 replete R91.30′00
R91.31{6,12}1060 / 120 / 360 3,1 replete R91.3100
R91.31′{12,6}10120 / 60 / 360 1,3 replete R91.31′00
R91.32{6,18}1236 / 108 / 324 2,2 replete R91.3200
R91.32′{18,6}12108 / 36 / 324 2,2 replete R91.32′00
R91.42{10,10}660 / 60 / 300 2,2 replete R91.4200
R91.33{6,33}6618 / 99 / 297 11,1 replete R91.3300
R91.33′{33,6}6699 / 18 / 297 1,11 replete R91.33′00
C91.17{8,16}1636 / 72 / 288 2,2 replete Chiral C91.1700
C91.17′{16,8}1672 / 36 / 288 2,2 replete Chiral C91.17′00
C91.18{8,16}1636 / 72 / 288 2,2 replete Chiral C91.1800
C91.18′{16,8}1672 / 36 / 288 2,2 replete Chiral C91.18′00
R91.40{8,16}4836 / 72 / 288 4,2 replete R91.4000
R91.40′{16,8}4872 / 36 / 288 2,4 replete R91.40′00
R91.41{8,16}4836 / 72 / 288 4,2 replete R91.4100
R91.41′{16,8}4872 / 36 / 288 2,4 replete R91.41′00
R91.34{6,93}1866 / 93 / 279 31,3 replete R91.3400
R91.34′{93,6}18693 / 6 / 279 3,31 replete R91.34′00
R91.35{6,273}1822 / 91 / 273 273,3series p Faces share vertices with themselves R91.35(see series p)0
R91.35′{273,6}18291 / 2 / 273 3,273series q Faces share vertices with themselves R91.35′(see series q)0
C91.19{12,12}3045 / 45 / 270 3,3 replete Chiral C91.1900
C91.20{12,12}3045 / 45 / 270 3,3 replete Chiral C91.2000
C91.21{12,24}4020 / 40 / 240 6,3 replete Chiral C91.2100
C91.21′{24,12}4040 / 20 / 240 3,6 replete Chiral C91.21′00
C91.22{12,24}4020 / 40 / 240 6,3 replete Chiral C91.2200
C91.22′{24,12}4040 / 20 / 240 3,6 replete Chiral C91.22′00
R91.43{15,30}3015 / 30 / 225 15,1 replete R91.4300
R91.43′{30,15}3030 / 15 / 225 1,15 replete R91.43′00
R91.44{16,28}11216 / 28 / 224 14,8 replete R91.4400
R91.44′{28,16}11228 / 16 / 224 8,14 replete R91.44′00
R91.45{16,28}11216 / 28 / 224 7,8 replete R91.4500
R91.45′{28,16}11228 / 16 / 224 8,7 replete R91.45′00
C91.23{24,24}618 / 18 / 216 3,3 replete Chiral C91.2300
R91.50{24,24}1218 / 18 / 216 6,6 replete R91.5000
R91.51{24,24}1218 / 18 / 216 6,6 replete R91.5100
R91.52{24,24}1218 / 18 / 216 8,4 replete R91.5200
R91.52′{24,24}1218 / 18 / 216 4,8 replete R91.52′00
R91.53{24,24}1218 / 18 / 216 4,4 replete R91.5300
R91.54{24,24}1218 / 18 / 216 4,4 replete R91.5400
R91.55{24,24}618 / 18 / 216 6,6 replete R91.5500
R91.56{24,24}618 / 18 / 216 6,6 replete R91.5600
R91.57{24,24}618 / 18 / 216 4,4 replete R91.5700
R91.58{24,24}618 / 18 / 216 4,4 replete R91.5800
R91.59{24,24}618 / 18 / 216 4,8 replete R91.5900
R91.59′{24,24}618 / 18 / 216 8,4 replete R91.59′00
R91.48{18,36}612 / 24 / 216 9,6 replete R91.4800
R91.48′{36,18}624 / 12 / 216 6,9 replete R91.48′00
R91.49{18,36}2412 / 24 / 216 6,6 replete R91.4900
R91.49′{36,18}2424 / 12 / 216 6,6 replete R91.49′00
R91.46{16,208}262 / 26 / 208 208,8 R91.4600
R91.46′{208,16}2626 / 2 / 208 8,208 R91.46′00
R91.47{16,208}522 / 26 / 208 208,8 R91.4700
R91.47′{208,16}5226 / 2 / 208 8,208 R91.47′00
C91.24{40,40}1010 / 10 / 200 10,10 replete Chiral C91.2400
C91.25{40,40}2010 / 10 / 200 10,10 replete Chiral C91.2500
R91.61{40,40}2010 / 10 / 200 20,20 replete R91.6100
R91.62{40,40}2010 / 10 / 200 8,20 replete R91.6200
R91.62′{40,40}2010 / 10 / 200 20,8 replete R91.62′00
R91.63{40,40}1010 / 10 / 200 20,20 replete R91.6300
R91.64{40,40}1010 / 10 / 200 20,8 replete R91.6400
R91.64′{40,40}1010 / 10 / 200 8,20 replete R91.64′00
R91.65{44,44}69 / 9 / 198 11,11 replete R91.6500
C91.26{49,49}48 / 8 / 196 7,7 replete Chiral C91.2600
C91.26′{49,49}48 / 8 / 196 7,7 replete Chiral C91.26′00
R91.60{30,195}262 / 13 / 195 195,15 R91.6000
R91.60′{195,30}2613 / 2 / 195 15,195 R91.60′00
C91.27{76,76}105 / 5 / 190 19,19 replete Chiral C91.2700
R91.67{63,126}63 / 6 / 189 63,21 replete R91.6700
R91.67′{126,63}66 / 3 / 189 21,63 replete R91.67′00
R91.66{54,189}142 / 7 / 189 189,27 R91.6600
R91.66′{189,54}147 / 2 / 189 27,189 R91.66′00
R91.69{184,184}42 / 2 / 184 184,184 R91.6900
R91.70{184,184}22 / 2 / 184 184,184series k trivial R91.70(see series k)0
R91.68{183,366}21 / 2 / 183 366,183series z trivial Faces share vertices with themselves Vertices share edges with themselves R91.68(see series z)0
R91.68′{366,183}22 / 1 / 183 183,366series i trivial Faces share vertices with themselves Faces share edges with themselves R91.68′(see series i)0
R91.71{364,364}21 / 1 / 182 364,364series s trivial Faces share edges with themselves Faces share vertices with themselves Vertices share edges with themselves R91.71(see series s)0

Other Regular Maps

General Index