Regular maps in the orientable surface of genus 92

NameSchläfliV / F / EmV, mFnotes C&D no.imageswire-
frames
R92.3{4,6}14364 / 546 / 1092 1,1 replete singular R92.300
R92.3′{6,4}14546 / 364 / 1092 1,1 replete singular R92.3′00
R92.1{3,12}14182 / 728 / 1092 1,1 replete singular R92.100
R92.1′{12,3}14728 / 182 / 1092 1,1 replete singular R92.1′00
R92.2{3,12}14182 / 728 / 1092 1,1 replete singular R92.200
R92.2′{12,3}14728 / 182 / 1092 1,1 replete singular R92.2′00
C92.1{6,6}182182 / 182 / 546 1,1 replete singular Chiral C92.100
C92.1′{6,6}182182 / 182 / 546 1,1 replete singular Chiral C92.1′00
C92.2{6,6}182182 / 182 / 546 1,1 replete singular Chiral C92.200
C92.2′{6,6}182182 / 182 / 546 1,1 replete singular Chiral C92.2′00
C92.3{6,6}182182 / 182 / 546 1,2 replete Chiral C92.300
C92.3′{6,6}182182 / 182 / 546 2,1 replete Chiral C92.3′00
C92.4{6,6}182182 / 182 / 546 1,2 replete Chiral C92.400
C92.4′{6,6}182182 / 182 / 546 2,1 replete Chiral C92.4′00
R92.6{6,6}12182 / 182 / 546 1,1 replete singular R92.600
R92.4{4,186}3724 / 186 / 372 93,2series m replete R92.4(see series m)0
R92.4′{186,4}372186 / 4 / 372 2,93series l replete R92.4′(see series l)0
R92.5{4,368}3682 / 184 / 368 368,2series h Faces share vertices with themselves R92.5(see series h)0
R92.5′{368,4}368184 / 2 / 368 2,368series j Faces share vertices with themselves R92.5′(see series j)0
R92.7{6,16}1642 / 112 / 336 2,2 replete R92.700
R92.7′{16,6}16112 / 42 / 336 2,2 replete R92.7′00
R92.8{6,16}2842 / 112 / 336 2,2 replete R92.800
R92.8′{16,6}28112 / 42 / 336 2,2 replete R92.8′00
C92.5{6,24}10426 / 104 / 312 4,1 replete Chiral C92.500
C92.5′{24,6}104104 / 26 / 312 1,4 replete Chiral C92.5′00
C92.6{6,24}10426 / 104 / 312 8,1 replete Chiral C92.600
C92.6′{24,6}104104 / 26 / 312 1,8 replete Chiral C92.6′00
C92.7{6,42}1414 / 98 / 294 14,1 replete Chiral C92.700
C92.7′{42,6}1498 / 14 / 294 1,14 replete Chiral C92.7′00
C92.8{6,42}1414 / 98 / 294 7,1 replete Chiral C92.800
C92.8′{42,6}1498 / 14 / 294 1,7 replete Chiral C92.8′00
R92.9{6,94}2826 / 94 / 282 47,3 replete R92.900
R92.9′{94,6}28294 / 6 / 282 3,47 replete R92.9′00
R92.10{6,276}922 / 92 / 276 276,3series p Faces share vertices with themselves R92.10(see series p)0
R92.10′{276,6}9292 / 2 / 276 3,276series q Faces share vertices with themselves R92.10′(see series q)0
R92.11{8,33}13216 / 66 / 264 11,2 replete R92.1100
R92.11′{33,8}13266 / 16 / 264 2,11 replete R92.11′00
R92.12{8,124}2484 / 62 / 248 62,4 replete R92.1200
R92.12′{124,8}24862 / 4 / 248 4,62 replete R92.12′00
R92.13{10,48}24010 / 48 / 240 24,5 replete R92.1300
R92.13′{48,10}24048 / 10 / 240 5,24 replete R92.13′00
C92.9{18,18}2626 / 26 / 234 3,6 replete Chiral C92.900
C92.9′{18,18}2626 / 26 / 234 6,3 replete Chiral C92.9′00
R92.14{10,230}462 / 46 / 230 230,5 R92.1400
R92.14′{230,10}4646 / 2 / 230 5,230 R92.14′00
C92.10{30,30}1414 / 14 / 210 5,10 replete Chiral C92.1000
C92.10′{30,30}1414 / 14 / 210 10,5 replete Chiral C92.10′00
R92.15{18,207}462 / 23 / 207 207,9 R92.1500
R92.15′{207,18}4623 / 2 / 207 9,207 R92.15′00
R92.16{94,188}42 / 4 / 188 188,47 R92.1600
R92.16′{188,94}44 / 2 / 188 47,188 R92.16′00
R92.18{186,186}22 / 2 / 186 186,186series k trivial Faces share vertices with themselves R92.18(see series k)0
R92.17{185,370}21 / 2 / 185 370,185series z trivial Faces share vertices with themselves Vertices share edges with themselves R92.17(see series z)0
R92.17′{370,185}22 / 1 / 185 185,370series i trivial Faces share vertices with themselves Faces share edges with themselves R92.17′(see series i)0
R92.19{368,368}21 / 1 / 184 368,368series s trivial Faces share edges with themselves Faces share vertices with themselves Vertices share edges with themselves R92.19(see series s)0

Other Regular Maps

General Index