Regular maps in the orientable surface of genus 94

NameSchläfliV / F / EmV, mFnotes C&D no.imageswire-
frames
C94.1{3,12}186186 / 744 / 1116 1,1 replete singular Chiral C94.100
C94.1′{12,3}186744 / 186 / 1116 1,1 replete singular Chiral C94.1′00
C94.2{6,6}186186 / 186 / 558 1,1 replete singular Chiral C94.200
C94.2′{6,6}186186 / 186 / 558 1,1 replete singular Chiral C94.2′00
C94.3{6,6}186186 / 186 / 558 1,2 replete Chiral C94.300
C94.3′{6,6}186186 / 186 / 558 2,1 replete Chiral C94.3′00
R94.1{4,35}4224 / 210 / 420 7,1 replete R94.100
R94.1′{35,4}42210 / 24 / 420 1,7 replete R94.1′00
R94.2{4,66}4412 / 198 / 396 11,1 replete R94.200
R94.2′{66,4}44198 / 12 / 396 1,11 replete R94.2′00
R94.3{4,190}3804 / 190 / 380 95,2series m replete R94.3(see series m)0
R94.3′{190,4}380190 / 4 / 380 2,95series l replete R94.3′(see series l)0
R94.4{4,376}3762 / 188 / 376 376,2series h Faces share vertices with themselves R94.4(see series h)0
R94.4′{376,4}376188 / 2 / 376 2,376series j Faces share vertices with themselves R94.4′(see series j)0
C94.4{6,12}12462 / 124 / 372 2,1 replete Chiral C94.400
C94.4′{12,6}124124 / 62 / 372 1,2 replete Chiral C94.4′00
C94.5{6,12}12462 / 124 / 372 4,1 replete Chiral C94.500
C94.5′{12,6}124124 / 62 / 372 1,4 replete Chiral C94.5′00
C94.7{10,10}6262 / 62 / 310 1,2 replete Chiral C94.700
C94.7′{10,10}6262 / 62 / 310 2,1 replete Chiral C94.7′00
C94.8{10,10}6262 / 62 / 310 1,2 replete Chiral C94.800
C94.8′{10,10}6262 / 62 / 310 2,1 replete Chiral C94.8′00
R94.5{6,96}966 / 96 / 288 48,1 replete R94.500
R94.5′{96,6}9696 / 6 / 288 1,48 replete R94.5′00
R94.6{6,96}966 / 96 / 288 32,3 replete R94.600
R94.6′{96,6}9696 / 6 / 288 3,32 replete R94.6′00
R94.7{6,96}966 / 96 / 288 48,3 replete R94.700
R94.7′{96,6}9696 / 6 / 288 3,48 replete R94.7′00
R94.8{6,282}942 / 94 / 282 282,3series p Faces share vertices with themselves R94.8(see series p)0
R94.8′{282,6}9494 / 2 / 282 3,282series q Faces share vertices with themselves R94.8′(see series q)0
C94.6{9,18}6231 / 62 / 279 3,3 replete Chiral C94.600
C94.6′{18,9}6262 / 31 / 279 3,3 replete Chiral C94.6′00
R94.10{12,21}4224 / 42 / 252 7,3 replete R94.1000
R94.10′{21,12}4242 / 24 / 252 3,7 replete R94.10′00
R94.11{12,21}824 / 42 / 252 3,3 replete R94.1100
R94.11′{21,12}842 / 24 / 252 3,3 replete R94.11′00
R94.9{10,235}942 / 47 / 235 235,5 R94.900
R94.9′{235,10}9447 / 2 / 235 5,235 R94.9′00
R94.12{12,114}764 / 38 / 228 57,6 replete R94.1200
R94.12′{114,12}7638 / 4 / 228 6,57 replete R94.12′00
C94.9{24,36}7212 / 18 / 216 6,4 replete Chiral C94.900
C94.9′{36,24}7218 / 12 / 216 4,6 replete Chiral C94.9′00
R94.16{24,36}7212 / 18 / 216 18,12 replete R94.1600
R94.16′{36,24}7218 / 12 / 216 12,18 replete R94.16′00
R94.17{24,36}7212 / 18 / 216 6,12 replete R94.1700
R94.17′{36,24}7218 / 12 / 216 12,6 replete R94.17′00
R94.13{18,72}246 / 24 / 216 36,3 replete R94.1300
R94.13′{72,18}2424 / 6 / 216 3,36 replete R94.13′00
R94.14{18,72}246 / 24 / 216 24,9 replete R94.1400
R94.14′{72,18}2424 / 6 / 216 9,24 replete R94.14′00
R94.15{18,72}126 / 24 / 216 18,6 replete R94.1500
R94.15′{72,18}1224 / 6 / 216 6,18 replete R94.15′00
R94.19{35,35}612 / 12 / 210 7,7 replete R94.1900
R94.18{30,42}7010 / 14 / 210 21,15 replete R94.1800
R94.18′{42,30}7014 / 10 / 210 15,21 replete R94.18′00
R94.20{66,66}66 / 6 / 198 33,33 replete R94.2000
R94.21{66,66}66 / 6 / 198 33,22 replete R94.2100
R94.21′{66,66}66 / 6 / 198 22,33 replete R94.21′00
R94.23{190,190}22 / 2 / 190 190,190series k trivial Faces share vertices with themselves R94.23(see series k)0
R94.22{189,378}21 / 2 / 189 378,189series z trivial Faces share vertices with themselves Vertices share edges with themselves R94.22(see series z)0
R94.22′{378,189}22 / 1 / 189 189,378series i trivial Faces share vertices with themselves Faces share edges with themselves R94.22′(see series i)0
R94.24{376,376}21 / 1 / 188 376,376series s trivial Faces share edges with themselves Faces share vertices with themselves Vertices share edges with themselves R94.24(see series s)0

Other Regular Maps

General Index