R12.6′

Statistics

genus c12, orientable
Schläfli formula c{30,10}
V / F / E c 6 / 2 / 30
notesis not a polyhedral map
vertex, face multiplicity c5, 30
Petrie polygons
10, each with 6 edges
rotational symmetry group60 elements.
full symmetry group120 elements.
its presentation c< r, s, t | t2, (sr)2, (st)2, (rt)2, rs3rs‑1, rsr‑2sr3, s10  >
C&D number cR12.6′
The statistics marked c are from the published work of Professor Marston Conder.

Relations to other Regular Maps

Its dual is R12.6.

Its Petrie dual is R8.5.

It can be 7-split to give R84.7′.
It can be built by 2-splitting S6:{15,10}.

List of regular maps in orientable genus 12.


Other Regular Maps

General Index