This page gives the Cayley diagrams of all the groups of order less than 32.
Their presentations are also given.
The letters in the presentations correspond to the colours in the Cayley diagrams:
black
red
green
blue
mauve
grey.
The pink lines and arrows at the edges of each diagram are sewing instructions,
and the light pink region outside these lines is not really there. If the
previous sentence makes no sense to you, the Wikipedia page on
Fundamental polygon
may help.
N ⋊ H indicates a semidirect product of N by H. N is the normal subgroup.
QN, DN and DicN denote groups of order N (the quaternion, dihedral and dicyclic groups respectively).
Cyclic groups are denoted by C.
Order |
|
Name |
Presentation generators as permutations |
Cayley diagram |
Orders of elements Centre Derived subgroup
Automorphisms GAP no., name (Sylow subgroup) |
1
|
Abelian
|
1
|
<>
|
|
1 1 1
1/1=1 1, 1
|
2
|
Abelian
|
C2
|
< k | k2 >
k=(ab) |
|
1.2 C2 1
1 / 1 = 1 1, C2
|
3
|
Abelian
|
C3
≅ A3
|
< k | k3 >
k=(abc)
|
|
1.32 C3 1
C2 / 1 = C2 1, C3
|
4
|
Abelian
|
C4
|
< k | k4 >
k=(abcd)
|
|
1.2.42 C4 1
C2 / 1 = C2 1, C4
|
C2 × C2
|
< r,k | r2, k2, rkrk >
r=(ab)(cd) b=(ad)(bc)
< r,g,b | r2, g2, rgb >
r=(ab)(cd) g=(ac)(bd) b=(ad)(bc)
|
|
1.23 C2×C2 1
D6 / 1 = D6 2, C2 x C2
|
5
|
Abelian
|
C5
|
< k | k5 >
k=(abcde)
|
|
1.54 C5 1
C4 / 1 = C4 1, C5
|
6
|
Abelian
|
C6
C3 × C2
|
< k | k6 >
k=(abcdef)
< k,r | k3, r2, krk-1r >
k=(abc) r=(de)
|
|
1.2.32.62 C6 1
C2 / 1 = C2 2, C6
|
Other
|
D6
≅S3
≅ C3 ⋊ C2
|
< k,r | k3, r2, krkr >
k=(abc) r=(bc)
|
|
1.23.32 1 C3
D6 / D6 = 1 1, S3
|
7
|
Abelian
|
C7
|
< k | k7 >
k=(abcdefg)
|
|
1.76 C7 1
C6 / 1 = 1 1, C7
|
8
|
Abelian
|
C8
|
< k | k8 >
k=(abcdefgh)
|
|
1.2.42.84 C8 1
C22 / 1 = C22 1, C8
|
C4 × C2
|
< k,r | k4, r2, krk-1r >
k=(abcd) r=(ef)
|
|
1.21+2.44 C4×C2 1
D8 / 1 = D8 2, C4 x C2
|
C2 × C2 × C2
|
< r,g,b | r2, g2, b2, rgrg, gbgb, rbrb >
r=(ab)(cd) g=(ac)(bd) b=(ad)(bc)
|
|
1.27 C2×C2×C2 1
PSL(3,2) / 1 = PSL(3,2) 5, C2 x C2 x C2
|
Other
|
D8
= C4 ⋊ C2
|
< k,r | r4, r2, krkr >
k=(abcd) r=(ac)
< r,g,b | b2, g2, r2,
bgbg, rbrg, rgrb >
b=(ab)(cd) g=(ac)(bd) r=(bc)
|
| 1.21+4.42 C2 C2
D8 / C22 = C2 3, D8
|
Q8
a.k.a. Dic8
|
< k,r | k4, r4, k2r2 >
b=(abcd)(ehgf) b=(afch)(bgde)
< r,g,b | r4, g4, b4, (rgb)2 >
r=(abde)(fhcg) g=(acdf)(egbh) b=(bcef)(agdh)
|
| 1.2.46 C2 C2
S4 / C22 = D6 4, Q8
|
9
|
Abelian
|
C9
|
< k | k9 >
k=(abcdefghi)
|
| 1.32.66 C9 1
C6 / 1 = C6 1, C9
|
C3 × C3
|
< k, r | k3, r3, krkkrr >
k=(abc) r=(def)
|
| 1.38 C3×C3 1
GL(2,3) / 1 = GL(2,3) 2, C3 x C3
|
10
|
Abelian
|
C10
≅ C5 × C2
|
< k | k10 >
k=(abcdefghij)
< k,r | k5, r2, krk-1r >
k=(abcde) r=(fg)
|
| 1.2.54.104 C10 1
C4 / 1 = C4 2, C10
|
Other
|
D10 = C5⋊C2
|
< k,r | k5, r2, krkr >
k=(abcde) r=(be)(cd)
|
| 1.25.54 1 C5
C5⋊C4 / D10 = C2 1, D10
|
11
|
Abelian
|
C11
|
< k | k11 >
k=(abcdefghijk)
|
| 1.1110 C11 1
C10 / 1 = C10 1, C11
|
12
|
Abelian
|
C12
≅ C4 × C3
|
< k | k12 >
k=(abcdefghijkl)
< k, r | k4, r3, krkkkrr >
k=(abc) r=(defg)
|
| 1.2.32.42.62.124 C12 1
C22 / 1 = C22 2, C12 C4
|
C6 × C2
≅ C3 × C2 × C2
|
< k,r | k6, r2, krkkkkkr >
k=(abcdef) r=(gh)
< r,g,b | r2, g2, b4, all commute >
r=(ab)(cd) g=(ac)(bd) b=(pqr)
|
| 1.23.32.66 C6×C2 1
D12 / 1 = D12 5, C6 x C2 C22
|
Other direct products
|
D12
= D6 ⋊ C2
≅ D6 × C2
|
< k,r | k6, r2, krkr >
k=(abcdef) r=(bf)(ce)
< r,g,b | r2, g2, b2, (rg)3, b central >
|
| 1.21+6.32.62 C2 C3
D12 / D6 = C2 4, D12 C22
|
Other
|
Dic12
≅ C3 ⋊ C4
|
< k,r | k6, r4, k3r2 >
b=(abc)(pr)(qs) r=(bc)(pqrs)
|
| 1.2.32.46.62 C2 C3
D12 / D6 = C2 1, C3 : C4 C4
|
A4
= (C2×C2) ⋊ C3
|
< k,r | k3, r3, (kr)2 >
|
| 1.23.38 1 C22
S4 / A4 = C2 3, A4 C22
|
13
|
Abelian
|
C13
|
< k | k13 >
k=(abcdefghijklm)
|
| 1.1312 C13 1
C12 / 1 = C12 1, C13
|
14
|
Abelian
|
C14
≅ C7 × C2
|
< k | k14 >
k=(abcdefghijklmn)
< k,r | k7, r2, krk6r >
k=(abcdefg) r=(pq)
|
| 1.2.76.146 C14 1
C6 / 1 = C6 2, C14
|
Other
|
D14 = C7 ⋊ C2
|
< k,r | k7, r2, krkr >
k=(abcdefg) r=(bg)(cf)(de)
|
| 1.27.76 1 C7
C7⋊C6 / D14 = C3 1, D14
|
15
|
Abelian
|
C15
≅ C5 × C3
|
< k | k15 >
k=(abcdefghijklmno)
< k,r | k3, r5, krkkrrr >
k=(abcde) r=(mno)
|
| 1.32.54.158 C15 1
C4×C2 / 1 = C4×C2 1, C15
|
16
|
Abelian
|
C16
|
< k | k16 >
k=(abcdefghijklmnop)
|
| 1.2.42.84.168 C16 1
C4×C2 / 1 = C4×C2 1, C16
|
C8 × C2
|
< k,r | k8, r2, krk-1r >
k=(abcdefgh) r=(ij)
|
| 1.23.44.88 C8×C2 1
D8×C2 / 1 = D8×C2 5, C8 x C2
|
C4 × C4
|
< k,r | k4, r4, krk-1r-1 >
k=(abcd) r=(efgh)
|
| 1.23.412 C4×C4 1
(C22×A4)⋊C2 / 1 = (C22×A4)⋊C2 2, C4 x C4
|
C4 × C2 × C2
|
< r,g,b | r2, g2, b4, all commute >
r=(ab) g=(cd) e=(efgh)
|
| 1.21+6.48 C4×C2×C2 1
"(((D8×C2)⋊C2)⋊C3)⋊C2" / 1 = ? 10, C4 x C2 x C2
|
C2 × C2 × C2 × C2
|
< r,g,b,k | r2, g2, b2, k2, all commute >
r=(ab) g=(cd) b=(ef) m=(gh)
|
| 1.215 C2×C2×C2×C2 1
A8 / 1 = A8 14, C2 x C2 x C2 x C2
|
Other direct products
|
D8 × C2
|
< r,g,b | r2, g2, b2, (rg)4, b central >
|
| 1.21+2+8.44 C2×C2 C2
"(((C4×C2)⋊C2)⋊C2)⋊C2" / C22 = ? 11, C2 x D8
|
Q8 × C2
|
< r,b,g | r4, b4, gr, rrbb, rgr-1g, bgb-1g >
r=(abcd)(efgh) b=(aecg)(fbhd) g=(pq)
|
| 1.21+2.412 C2×C2 C2
"(((C24)⋊C3)⋊C2)⋊C2" / C22 = ? 12, C2 x Q8
|
Other
|
D16
= C8 ⋊ C2
|
< k,r | k8, r2, krkr >
k=(abcdefgh) r=(bh)(cg)(df)
|
| 1.21+8.42.84 C2 C4
"(D8×C2)⋊C2" / D8 = C22 7, D16
|
Modular
= C8 ⋊ C2
|
< k,r | k8, r2, krkkkr >
k=(abcdefgh) r=(bf)(dh)
|
| 1.21+2.44.88 C4 C2
D8×C2 / C22 = C22 6, (C4 x C2) : C2
|
Quasidihedral, a.k.a. semidihedral
= C8 ⋊ C2
|
< k,r | k8, r2, krkkkkkr >
k=(abcdefgh) r=(bd)(cg)(fh)
|
| 1.21+4.46.84 C2 C4
D8×C2 / D8 = C2 8, QD16
|
Dic16
a.k.a. Q16
|
< k,r | k8, r4, k4r2 >
k=(abcdefgh)(pqrstuvw) r=(apet)(bwfs)(cvgr)(duhq)
|
| 1.2.410.84 C2 C4
(D8×C2)⋊C2 / D8 = C22 9, Q16
|
C4 ⋊ C4
|
< k,r | k4, r4, krkr3 >
k=(abcd) r=(bd)(efgh)
|
| 1.23.412 C2×C2 C2
C24⋊C2 / C22 = ? 4, C4 : C4
|
(C2 × C2) ⋊ C4
|
< r,g,k | r2, g2, k4, rgrg, krkkkg, kgkkkr >
r=(ab)(cd) g=(ac)(bd) e=(bc)(pqrs)
|
| 1.23+4.48 C2×C2 C2
C24⋊C2 / C22 = ? 3, (C4 x C2) : C2
|
Pauli
= D8 ⋊ C2
= Q8 ⋊ C2
= (C4×C2) ⋊ C2
|
< k,r,g | k4, r2, g2, krkr, kgkkkg, kkrgrg >
k=(abcd)(efgh) r=(bd)(eg) g=(ae)(bf)(cg)(dh)
|
| 1.27.48 C4 C2
S4×C2 / C22 = ? 13, C4 : C4
|
17
|
Abelian
|
C17
|
< k | k17 >
k=(abcdefghijklmnopq)
|
| 1.1716 C17 1
C16 / 1 = C16 1, C17
|
18
|
Abelian
|
C18
= C9 × C2
|
< k | k18 >
k=(abcdefghijklmnopqr)
< k,r | k9, r2, krk-1r-1 >
k=(abcdefghi) r=(mn)
|
| 1.2.32.62.96.186 C18 1
C6 / 1 = C6 2, C18 C9
|
C6 × C3
= C3 × C3 × C2
|
< k,r | k6, r3, krk-1r-1 >
k=(abcdef) r=(jkl)
|
| 1.2.38.68 C6×C3 1
GL(2,3) / 1 = GL(2,3) 5, C6 x C3 C32
|
Other direct products
|
D6 × C3
≅ (C3 × C3) ⋊ C2
with the C2 interchanging the generators of the two C3s
|
< r,g,b | k2, g2, b3, (rg)3, b central >
|
| 1.23.38.66 C3 C3
D12 / D6 = C2 3, C3 x S3 C32
|
Other
|
D18
|
< k,r | k9, r2, krkr >
k=(abcdefghi) r=(bi)(ch)(dg)(ef)
|
| 1.29.32.96 1 C9
"(C9⋊)⋊C2" / D18 = C3 1, D18 C9
|
(C3 × C3) ⋊ C2
with the C2 acting separately on the two C3s
|
< r,g,b | r2, g2, b2, (rg)3, (rb)3, (gb)3, (rgb)2 >
< r,g,b | r2, g2, b2, (rg)3, (gb)3, (br)3,
(rgb)2, (rbg)2, (rgrb)3 >
|
| 1.29.38 1 C3×C3
"((C32⋊Q8)⋊C3)⋊C2" / C32⋊C2 = ? 4, (C3 x C3) : C2 C32
|
19
|
Abelian
|
C19
|
< k | k19 >
k=(abcdefghijklmnopqrs)
|
| 1.1918 C19 1
C18 / 1 = C18 1, C19
|
20
|
Abelian
|
C20
= C5 × C4
|
< k | k20 >
k=(abcdefghijklmnopqrst)
< k,r | k5, r4, krk-1r-1 >
k=(abcde) r=(mnop)
|
| 1.2.42.54.104.204 C20 1
C4×C2 / 1 = C4×C2 2, C20 C4
|
C10 × C2
= C5 × C2 × C2
|
< k,r | k10, r2, krk-1r-1 >
k=(abcdefghij) r=(mn)
< r,g,b | r2, gr2, bk5, all commute >
|
| 1.2.42.54.1012 C10×C2 1
D6×C4 / 1 = D6×C4 5, C10 x C2 C22
|
Other direct products
|
D20
= C10 ⋊ C2
≅ D10 × C2
|
< k,r | k10, r2, krkr >
k=(abcdefghij) r=(bj)(ci)(dh)(eg)
< r,g,b | r2, g2, b2, (rg)2, b central >
|
| 1.21+10.54.104 C2 C5
"C2 x (C5 : C4)" / D10 = ? 4, D20 C22
|
Other
|
Dic20
≅ C5 ⋊C2 C4
|
< k,r | k10, r4, k5r2 >
k=(abcde)(pr)(qs) r=(be)(cd)(pqrs)
< k,r | k5, r4, krkrrr >
|
| 1.2.410.54.104 C2 C5
C2×(C5⋊C2C4) / D10 = C2 1, C5 : C4 C4
|
Frob20
≅ C5 ⋊C4 C4
|
< k,g | k4, r2, (rk)4, (rk2)5 >
|
| 1.25.410.54 1 C5
C5⋊C4C4 / C5⋊C4C4 = 1 3, C5 : C4 C4
|
21
|
Abelian
|
C21
= C7 × C3
|
< k | k21 >
k=(abcdefghijklmnopqrstu)
< k,r | k7, r3, krk-1r-1 >
k=(abcdefg) r=(pqr)
|
| 1.32.76.2112 C21 1
C6×C2 / 1 = C6×C2 2, C21
|
Other
|
C7 ⋊ C3
|
< k,r | k3, r3, (kr)7 >
The sides of the triangle formed by the horizontal, the vertical, and
the steepest lines in the diagram are in the ratio:
1 : 3*sqrt(3) : 2*sqrt(7).
|
| 1.314.76 1 C7
|
22
|
Abelian
|
C22
= C11 × C2
|
< k | k22 >
k=(abcdefghijklmnopqrstuv)
< k,r | k11, r2, krk-1r-1 >
k=(abcdefghijk) r=(pq)
|
| 1.2.1110.2210 C22 1
C10 / 1 = C10 2, C22
|
Other
|
D22
= C11 ⋊ C2
|
< k,r | k11, r2, krkr >
k=(abcdefghijk) r=(bk)(cj()di)(eh)(fg)
|
| 1.211.1110 1 C11
"(C11 : C5) : C2" / D22 = C5 1, D22
|
23
|
Abelian
|
C23
|
< k | k23 >
k=(abcdefghijklmnopqrstuvw)
|
| 1.2322 C23 1
C22 / 1 = C22 1, C23
|
24
|
Abelian
|
C24
= C8 × C3
|
< k | k24 >
k=(abcdefghijklmnopqrstuvwv)
< k,r | k8, r3, krk-1r-1 >
k=(abcdefgh) r=(mn)
|
| 1.2.32.42.62.84.126.246 C24 1
C232 / 1 = C232 2, C24 C8
|
C12 × C2
= C6 × C4
= C4 × C3 × C2
|
< k,r | k12, r2, krk-1r-1 >
k=(abcdefghijkl) r=(pq)
< k,r | k6, r4, krk-1r-1 >
k=(abcdef) r=(pqrs)
|
| 1.23.32.44.66.128 C12×C2 1
D8×C2 / 1 = D8×C2 9, C12 x C2 C4×C2
|
C3 × C2 × C2 × C2
= C6 × C2 × C2
= C2 × C2 × C2 × C3
|
< r,g,b | r2, g2, 66, all commute >
|
| 1.27.32.614 C3×C2×C2×C2 1
PSL(3,2)×C2 / 1 = PSL(3,2)×C2 15, C6 x C2 x C2 C23
|
Other direct products
|
D12 × C2
= D6 × C2 × C2
|
< r,g,b | r2, g2, b2, (rg)6, b central >
|
| 1.215.32.66 C2×C2 C3
S4×D6 / D6 = S4 14, C2 x C2 x S3 C23
|
D8 × C3
|
< r,g,b | r2, g2, b3, (rg)4, b central >
|
| 1.25.32.42.610.124 C3×C2 C2
D8×C2 / C22 = ? 10, C3 x D8 D8
|
D6 × C4
|
< r,g,b | r2, g2, b4, (rg)3, b central >
|
| 1.27.32.48.62.124 C4 C3
S3×C22 / S3 = ? 5, C4 x S3 C4×C2
|
Dic12 × C2
≅ C6 ⋊C2 C4
|
< b,r,g | b6, r4, g2, brbbbr, gbgb-1, grgr-1 >
b=(abc)(mo)(np) r=(bc)(mnop) g=(st)
< k,r | k6, r4, krkr3 >
k=(abcdef) r=(bf)(ce)(pqrs)
|
| 1.21+2.32.412.66 C22 C3
D8×D6 / D6 = ? 7, C2 x (C3 : C4) C4×C2
|
Q8 × C3
|
< r,b,g | r4, b4, g2, rrbb, rgr-1g-1, bgb-1g-1 >
|
| 1.2.32.48.62.1212 C3×C2 C2
S4×C2 / C22 = ? 11, C3 x Q8 Q8
|
A4 × C2
≅ (C2×C2×C2) ⋊ C3
|
< k,r | k6, r2, (k3r)2 >
k3 is central
< k,r | k3, r2, (kr)6 >
(kr)3 is central
|
| 1.27.38.68 C2 C2×C2
S4 / A4 = C2 13, C2 x A4 C23
|
Other
|
D24
= C12 ⋊ C2
|
< k,r | k12, r2, krkr>
k=(abcdefghijkl) r=(bl)(ck)(dj)(ei)(fh)
|
| 1.21+12.32.42.62.124 C2 C6
D8×C3 / D12 = C2 6, D24 D8
|
Dic24
|
< k,r | k12, r4, k6r2 >
k=(abcdefghijkl)(mnopqrstuvwx) r=(asgm)(brhx)(cqiw)(dpjv)(eoku)(fnlt)
|
| 1.2.32.42+12.62.124 C2 C6
D8×C3 / D12 = C2 4, C3 : Q8 Q8
|
C3 ⋊ C8
|
< k,r | k8, r3, krk7r >
k=(abc) r=(bc)(defghijk)
|
| 1.2.32.42.62.812.124 C4 C3
D6×C22 / S3 = D6×C22 1, C3 : C8 C8
|
SL(2,3)
≅ Q8 ⋊ C3
|
< k,r | k3, r3, (kr)3 >
k=(abcdef)(gh) r=(gahd)(ecbf)
< r,b,g,e | r4, b4, g4, e3,
rrbb, bbgg, ggrr, rbgrbg, rebege>
|
| 1.2.38.46.68 C2 Q8
S4 / A4 = C2 3, SL(2,3) Q8
|
C3 ⋊ D8
|
< k,r,g | k3, g2, r2, (rg)4, (rk)2, (gk)2 >
k=(abc) g=(ghij)(bc) r=(hj) |
| 1.21+2+6.32.46.66 C2 C6
D6×C22 / D12 = C2 8, (C6 x C2) : C2 D8
|
S4
≅ (C2×C2) ⋊ D6
|
< r,g,b | r2, g2, b2, (rg)3, (gb)3, (br)3,
(rgb)4, (rbg)4, (rgrb)2 >
|
| 1.23+6.38.46 1 A4
S4 / S4 = 1 12, S4 D8
|
25
|
Abelian
|
C25
|
< k | k25 >
k=(abcdefghijklmnopqrstuvwxy)
|
| 1.54.2520 C25 1
C20 / 1 = C20 1, C25
|
C5 × C5
|
< k,r | k5, r5, krk-1r-1>
k=(abcde) r=(fghij)
|
| 1.524 C5×C5 1
GL(2,5) / 1 = GL(2,5) 2, C5 x C5 1
|
26
|
Abelian
|
C26
= C13 × C2
|
< k | k26 >
k=(abcdefghijklmnopqrstuvwxyz)
< k,r | k13, r2, krk-1r-1 >
k=(abcdefghijklm) r=(pq)
|
| 1.2.1312.2612 C26 1
C12 / 1 = C12 2, C26
|
Other
|
D26
= C13 ⋊ C2
|
< k,r | k11, r2, krkr >
k=(abcdefghijklm) r=(bm)(cl)(dk)(ej)(fi)(gh)
|
| 1.213.1312 1 C13
"(C13 : C4) : C3" / D26 = C6 1, D26
|
27
|
Abelian
|
C27
|
< k | k27 >
k=(abcdefghijklmnopqrstuvwxyzæ)
|
| 1.32.96.2718 C27 1
C18 / 1 = C18 1, C27
|
C9 × C3
|
< k,r | k9, r3, krk-1r-1 >
k=(abcdefghi) r=(pqr)
|
| 1.38.918 C9×C3 1
"C2 x (((C3 x C3) : C3) : C2)" / 1 = ? 2, C9 x C3
|
C3 × C3 × C3
|
< k,r,g | k3, r3, g3,
krk-1r-1, rgr-1g-1, gkg-1g-1 >
k=(abc) r=(def) g=(ghi)
|
| 1.327 C33 1
Gl(3,3) / 1 = GL(3,3) 5, C3 x C3 x C3
|
Other
|
C9 ⋊ C3
|
< k,r | k9, r3,
krk5r-1 >
k=(abcdefghi) r=(beh)(cif)
|
| 1.32+6.918 C3 C3
"((C3 x C3) : C3) : C2" / C32 = ? 4, C9 : C3
|
(C3 × C3) ⋊ C3
|
< k,r | k3, r3, (kr)3,
(kr2)3 >
|
| 1.32+24 C3 C3
"(((C3 x C3) : Q8) : C3) : C2" / C32 = ? 3, (C3 x C3) : C3
|
28
|
Abelian
|
C28
= C7 × C4
|
< k | k28 >
k=(abcdefghijklmnopqrstuvwxyzæð)
< k,r | k7, r4, krk-1r-1 >
k=(abcdefg) r=(mnop)
|
| 1.2.42.76.2118 C28 1
C6×C2 / 1 = C6×C2 2, C28 C4
|
C14 × C2
= C7 × C2 × C2
|
< k,r | k14, r2, krk-1r-1 >
k=(abcdefg) r=(pq)
< r,g,b | k2, g2, bk7, all comute >
|
| 1.23.76.1418 C14×C2 1
D6×C6 / 1 = D6×C6 4, C14 x C2 C22
|
Other direct products
|
D28
= C14 ⋊ C2
≅ D14 × C2
|
< k,r | k14, r2, krkr >
k=(abcdefghijklmn) r=(bn)(cm)(dl)(ek)(fj)(gj)
< r,g,b | r2, g2, b2, (rg)b7, b central >
|
| 1.21+2+12.76.146 C2 C7
(C7⋊C6)×C2 / D14 = C6 3, D28 C22
|
Other
|
Dic28
≅ C7 ⋊C2 C4
|
< k,r | k14, r4, k7r2 >
k=(abcdefg)(pr)(qs) r=(bg)(cf)(de)(pqrs)
|
| 1.2.414.76.146 C2 C7
(C7⋊C6)×C2 / D14 = C6 1, C7 : C4 C4
|
29
|
Abelian
|
C29
|
< k | k29 >
k=(abcdefghijklmnopqrstuvwxyzæðñ)
|
| 1.2928 C29 1
C28 / 1 = C28 1, C29
|
30
|
Abelian
|
C30
= C15 × C2
= C10 × C3
= C6 × C5
= C5 × C3 × C2
|
< k | k30 >
k=(abcdefghijklmnopqrstuvwxyzæðñç)
< k,r | k15, r2, krk-1r-1 >
k=(abcdefghijklmno) r=(pq)
< k,r | k10, r3, krk-1r-1 >
k=(abcdefghij) r=(klm)
< k,r | k6, r5, krk-1r-1 >
k=(abcdef) r=(ghijk)
|
| 1.2.32.54.62.104.158.308 C30 1
C4×C2 / 1 = C4×C2 4, C30
|
Other direct products
|
D10 × C3
|
< r,g,b | r2, g2, b3, (rg)5, b central >
|
| 1.25.32.54.610.158 C3 C5
(C5⋊C4)×C2 / D10 = C22 2, C3 x D10
|
D6 × C5
|
< r,g,b | r2, g2, b5, (rg)3, b central >
|
| 1.23.32.54.1012.158 C5 C3
D6×C4 / D6 = C4 1, C5 x S3
|
Other
|
D30
C15 ⋊ C2
|
< k,r | k15, r2, abab >
k=(abcdefghijklmno) r=(bo)(cn)(dm)(el)(fk)(gj)(hi)
|
| 1.215.32.54.158 1 C15
(C5⋊C4)×D6 / D6 = ? 3, D30
|
31
|
Abelian
|
C31
|
< k | k31 >
k=(abcdefghijklmnopqrstuvwxyzæðñçþ)
|
| 1.3130 C31 1
C30 / 1 = C30 1, C31
|