This page shows double Cayley diagrams of small groups of prime
order, up to order 149. Double Cayley diagrams are described, and
some shown, in the page Double Cayley
Diagrams of Small Groups.
For the ones on this page, the arcs (shown in black on that page) for
the group of prime order itself are omitted for the sake of clarity.
It is obvious where they belong, they form a regular p-gon. The red
arcs are Cayley diagrams for the automorphism group of the group of
prime order. The identity of the group of prime order is shown as a
black dot.
For any prime p, the automorphism group of Cp is C(p-1), which has
elements of all orders dividing p-1. This page shows all, and only,
those automorphisms which have order p-1. For example, if C11 is regarded
as the integers modulo 11 under addition, the automorphisms are the results
of multiplication by 2, 6, 7 or 8 modulo 11, being four 10-cycles. 2 and 6,
and 7 and 8, give the same 10-cycles traversed in opposite directions. No
maximum-cycle generator can be a quadratic residue of the prime.
Group | Automorphism group | Cayley diagram |
C2
|
{1}
|
|
C3
|
C2
The generator of the 2-cycle is 2.
|
|
C5
|
C4
The generators of the 4-cycle are 2(3).
|
|
C7
|
C6
The generators of the 6-cycle are 3(5).
|
|
C11
|
C10
The generators of the 10-cycles are 2(6), 7(8).
|
|
C13
|
C12
The generators of the 12-cycles are 2(7), 6(11).
|
|
C17
|
C16
The generators of the 16-cycles are 3(6), 5(7), 10(12), 11(14).
|
|
C19
|
C18
The generators of the 18-cycles are 2(10), 3(13), 14(15).
|
|
C23
|
C22
The generators of the 22-cycles are 5(14), 7(10), 11(21), 15(20), 17(19).
|
|
C29
|
C28
The generators of the 28-cycles are 2(15), 3(10), 8(11), 14(27), 18(21), 19(26).
|
|
C31
|
C30
The generators of the 30-cycles are 3(21), 11(17), 12(13), 22(24).
|
|
C37
|
C36
The generators of the 36-cycles are 2(19), 5(15), 13(20), 17(24), 18(35),
22(32).
|
|
C41
|
C40
The generators of the 40-cycles are 6(7), 11(15), 12(24), 13(19), 17(29),
22(28), 26(30), 34(35).
|
|
C43
|
C42
The generators of the 42-cycles are 3(29), 5(26), 12(18), 19(34), 20(28), 30(33).
|
|
C47
|
C46
The generators of the 46-cycles are 5(19), 10(33), 11(30), 13(29), 15(22),
20(40), 23(45), 26(38), 31(44), 35(43), 39(41).
|
|
C53
|
C52
The generators of the 52-cycles are 2(27), 3(18), 5(32), 8(20), 12(31),
14(19), 21(48), 22(41), 26(51), 33(45), 34(39), 35(50).
|
|
C59
|
C58
The generators of the 58-cycles are 2(30), 6(10), 8(37), 11(43), 13(50),
14(38), 18(23), 24(32), 31(40), 33(34), 39(56), 42(52), 44(55), 47(54).
|
|
C61
|
C60
The generators of the 60-cycles are 2(31), 6(51), 7(35), 10(55), 17(18), 26(54), 30(59), 43(44).
|
|
C67
|
C66
The generators of the 66-cycles are 2(34), 7(48), 11(61), 12(28), 13(31),
18(41), 20(57), 32(44), 46(51), 50(63).
|
|
C71
|
C70
The generators of the 70-cycles are 7(61), 11(13), 21(44), 22(42), 28(33), 31(55),
35(69), 47(68), 52(56), 53(67), 59(65), 62(63).
|
|
C73
|
C72
The generators of the 72-cycles are 5(44), 11(20), 13(45), 14(47), 15(39), 26(59), 28(60), 29(68), 31(33), 34(58), 40(42), 53(62).
|
|
C79
|
C78
The generators of the 78-cycles are 3(53), 6(66), 7(34), 28(48), 29(30), 35(70), 37(47), 39(77), 43(68), 54(60), 59(75), 63(74).
|
|
C83
|
C82
The generators of the 82-cycles are 2(42), 5(50), 6(14), 8(52), 13(32), 15(72), 18(60), 19(35), 20(54), 22(34), 24(45), 39(66), 43(56), 46(74), 47(53), 55(80), 57(67), 58(73), 62(79), 71(76).
|
|
C89
|
C88
The generators of the 88-cycles are 3(30), 6(15), 7(51), 13(48), 14(70), 19(75), 23(31), 24(26), 27(33), 28(35), 29(43), 38(82), 41(76), 46(60), 54(61), 56(62), 58(66), 59(86), 63(65), 74(83).
|
|
C97
|
C96
The generators of the 96-cycles are 5(39), 7(14), 10(68), 13(15), 17(40), 21(37), 23(38), 26(56), 29(87), 41(71), 57(80), 58(92), 59(74), 60(76), 82(84), 83(90).
|
|
C101
|
C100
The generators of the 100-cycles are 2(51), 3(34), 7(29), 8(38), 11(46), 12(59), 15(27), 18(73), 26(35), 28(83), 40(48), 42(89), 50(99), 53(61), 55(90), 63(93), 66(75), 67(98), 72(94), 74(86).
|
|
C103
|
C102
The generators of the 102-cycles are 5(62), 6(86), 11(75), 12(43), 20(67), 21(54), 35(53), 40(85), 44(96), 45(87), 48(88), 51(101), 65(84), 70(78), 71(74), 77(99).
|
|
C107
|
C106
The generators of the 106-cycles are 2(54), 5(43), 6(18), 7(46), 8(67), 15(50), 17(63), 20(91), 21(51), 22(73), 24(58), 26(70), 28(65), 31(38), 32(97), 45(88), 55(72), 59(78), 60(66), 68(96), 71(104), 74(94), 77(82), 80(103), 84(93), 95(98).
|
|
C109
|
C108
The generators of the 108-cycles are 6(91), 10(11), 13(42), 14(39), 18(103), 24(50), 30(40), 37(56), 44(57), 47(58), 51(62), 52(65), 53(72), 59(85), 67(96), 69(79), 70(95), 98(99).
|
|
C113
|
C112
The generators of the 112-cycles are 3(38), 5(68), 6(19), 10(34), 12(66), 17(20), 21(70), 23(59), 24(33), 27(67), 29(39), 37(55), 43(92), 45(108), 46(86), 47(101), 54(90), 58(76), 74(84), 75(110), 79(103), 80(89), 93(96), 94(107).
|
|
C127
|
C126
The generators of the 126-cycles are 3(85), 6(106), 7(109), 12(53), 14(118), 23(116), 29(92), 39(114), 43(65), 45(48), 46(58), 55(97), 56(93), 57(78), 67(91), 83(101), 86(96), 110(112).
|
|
C131
|
C130
The generators of the 130-cycles are 2(66), 6(22), 8(82), 10(118), 14(103), 17(54), 23(57), 26(126), 29(122), 30(83), 31(93), 37(85), 40(95), 50(76), 56(124), 67(88), 72(111), 87(128), 90(115), 96(116), 97(104), 98(127), 106(110), 119(120).
|
|
C137
|
C136
The generators of the 136-cycles are 3(46), 5(55), 6(23), 12(80), 13(116), 20(48), 21(124), 24(40), 26(58), 27(66), 29(52), 31(84), 33(54), 35(47), 42(62), 43(51), 45(67), 53(106), 57(125), 70(92), 71(110), 75(95), 79(111), 82(132), 83(104), 85(108), 86(94), 89(117), 90(102), 91(134), 97(113), 114(131).
|
|
C139
|
C138
The generators of the 138-cycles are 2(70), 3(93), 12(58), 15(102), 17(90), 18(85), 19(22), 21(53), 26(123), 32(126), 40(73), 50(114), 56(72), 61(98), 68(92), 88(109), 101(128), 104(135), 108(130), 110(115), 111(134), 119(132).
|
|
C149
|
C148
The generators of the 148-cycles are 2(75), 3(50), 8(56), 10(15), 11(122), 12(87), 13(23), 14(32), 18(58), 21(71), 27(138), 34(57), 38(51), 40(41), 43(52), 48(59), 55(84), 60(77), 62(137), 65(94), 66(70), 72(89), 74(147), 78(128), 79(83), 90(101), 91(131), 92(115), 93(141), 97(106), 98(111), 99(146), 108(109), 117(135), 126(136), 134(139).
|
|