Definition

For the purpose of these pages, a "regular map" is defined as an of embedding a graph (a set of vertices and edges) in a compact 2-manifold such that

Note that this definition excludes star-polyhedra.

For the reasoning behind this choice of definition, see What do we mean by "Regular" for Regular Maps?

Further, optional, criteria are listed below. Regular maps violating these criteria are listed on these pages, with red marks indicating the violations.

  1.   Each face has at least three edges
  2.   Each vertex has at least three edges
  3.   A face may not share a vertex with itself, equivalently a vertex may not share a face with itself.
  4.   A face may not share an edge with itself, equivalently an edge may not share a face with itself.
  5.   An edge may not share a vertex with itself, equivalently a vertex may not share an edge with itself.
  6.   It is "flag-transitive", with full symmetry including reflection, not chiral
If a regular map is shown with one or more red blobs, you may choose to ignore it, deprecate it, or describe it as "degenerate" or "pathological". Or you may reserve your contempt for those with what you consider the more severe red blobs.

For the sphere, this definition gives the five regular maps usually known as the five "platonic solids" or "regular polyhedra", and some other things. For manifolds of genus greater than 0, it gives some things which which have a pleasing amount of symmetry, but will be less familiar to many readers.

Index to regular maps, grouped by manifold.

Some Cayley diagrams drawn on orientable 2-manifolds
Some pages on groups

Copyright N.S.Wedd 2009