This page gives the Cayley diagrams, also known as Cayley graphs,
of all groups of order less than 32. Their presentations are also given.
The letters in the presentations correspond to the colours in the Cayley diagrams:
black
red
green
blue
mauve
grey.
N ⋊ H indicates a semidirect product of N by H. N is the normal subgroup.
QN, DN and DicN denote groups of order N (the quaternion, dihedral and dicyclic groups respectively).
Cyclic groups are denoted by C.
Order |
|
Name |
Presentation generators as permutations |
Cayley diagram |
Orders of elements Centre Derived subgroup
Automorphisms GAP no., name (Sylow subgroup) Schur mulitplier |
1
|
Abelian
|
1
|
<>
|
|
1 1 1
1/1=1 1, 1
1
|
2
|
Abelian
|
C2
|
< k | k2 >
k=(ab) |
|
1.2 C2 1
1 / 1 = 1 1, C2
1 |
3
|
Abelian
|
C3
≅ A3
|
< k | k3 >
k=(abc)
|
|
1.32 C3 1
C2 / 1 = C2 1, C3
1
|
4
|
Abelian
|
C4
|
< k | k4 >
k=(abcd)
|
|
1.2.42 C4 1
C2 / 1 = C2 1, C4
1
|
C2 × C2
|
< r, g | r2, g2, rgrg >
r=(ab)(cd) g=(ac)(bd) b=(ad)(bc)
|
|
1.23 C2×C2 1
D6 / 1 = D6 2, C2 x C2
2
|
5
|
Abelian
|
C5
|
< k | k5 >
k=(abcde)
|
|
1.54 C5 1
C4 / 1 = C4 1, C5
1
|
6
|
Abelian
|
C6
C3 × C2
|
< k | k6 >
k=(abcdef)
< k,r | k3, r2, krk-1r >
k=(abc) r=(de)
|
|
1.2.32.62 C6 1
C2 / 1 = C2 2, C6
1
|
Other
|
D6
≅S3
≅ C3 ⋊ C2
|
< k,r | k3, r2, krkr >
k=(abc) r=(bc)
|
|
1.23.32 1 C3
D6 / D6 = 1 1, S3
1
|
7
|
Abelian
|
C7
|
< k | k7 >
k=(abcdefg)
|
|
1.76 C7 1
C6 / 1 = 1 1, C7
1
|
8
|
Abelian
|
C8
|
< k | k8 >
k=(abcdefgh)
|
|
1.2.42.84 C8 1
C22 / 1 = C22 1, C8
1
|
C4 × C2
|
< k,r | k4, r2, krk-1r >
k=(abcd) r=(ef)
|
|
1.21+2.44 C4×C2 1
D8 / 1 = D8 2, C4 x C2
2
|
C2 × C2 × C2
|
< r,g,b | r2, g2, b2, rg2, gb2, rb2 >
r=(ab) g=(cd) b=(ef)
|
| 1.27 C2×C2×C2 1
PSL(3,2) / 1 = PSL(3,2) 5, C2 x C2 x C2
2x2x2
|
Other
|
D8
= C4 ⋊ C2
|
< k,r | r4, r2, krkr >
k=(abcd) r=(ac)
< r,g,b | b2, g2, r2,
bgbg, rbrg >
b=(ab)(cd) g=(ac)(bd) r=(bc)
|
| 1.21+4.42 C2 C2
D8 / C22 = C2 3, D8
2
|
Q8
a.k.a. Dic8
|
< r,b | r4, b4, rbrrrb, rrbb >
b=(abcd)(ehgf) r=(afch)(bgde)
< r,g | r4, g4, rgrrrg,rrgg >
r=(abde)(fhcg) g=(acdf)(egbh) b=(bcef)(agdh)
|
| 1.2.46 C2 C2
S4 / C22 = D6 4, Q8
1 |
9
|
Abelian
|
C9
|
< k | k9 >
k=(abcdefghi)
|
| 1.32.66 C9 1
C6 / 1 = C6 1, C9
1
|
C3 × C3
|
< k, r | k3, r3, krkkrr >
k=(abc) r=(def)
|
| 1.38 C3×C3 1
GL(2,3) / 1 = GL(2,3) 2, C3 x C3
3
|
10
|
Abelian
|
C10
≅ C5 × C2
|
< k | k10 >
k=(abcdefghij)
< k,r | k5, r2, krk-1r >
k=(abcde) r=(fg)
|
| 1.2.54.104 C10 1
C4 / 1 = C4 2, C10 1
|
Other
|
D10 = C5⋊C2
|
< k,r | k5, r2, krkr >
k=(abcde) r=(be)(cd)
|
| 1.25.54 1 C5
C5⋊C4 / D10 = C2 1, D10 1
|
11
|
Abelian
|
C11
|
< k | k11 >
k=(abcdefghijk)
|
| 1.1110 C11 1
C10 / 1 = C10 1, C11
1
|
12
|
Abelian
|
C12
≅ C4 × C3
|
< k | k12 >
k=(abcdefghijkl)
< k, r | k3, r4, krkkrrr >
k=(abc) r=(defg)
|
| 1.2.32.42.62.124 C12 1
C22 / 1 = C22 2, C12 C4 1
|
C6 × C2
≅ C3 × C2 × C2
|
< k,r | k6, r2, krkkkkkrr >
k=(abcdef) r=(gh)
|
| 1.23.32.66 C6×C2 1
D12 / 1 = D12 5, C6 x C2 C22 2
|
Other direct products
|
D12
= D6 ⋊ C2
≅ D6 × C2
|
< k,r | k6, r2, krkr >
k=(abcdef) r=(bf)(ce)
< k,r | k3, r2, g2, krkr, kgkkg, rgrg >
k=(abc) r=(bc) g=(de)
|
| 1.21+6.32.62 C2 C3
D12 / D6 = C2 4, D12 C22 2
|
Other
|
Dic12
≅ C3 ⋊ C4
|
< b,r | b6, r4, brbrrr >
b=(abc)(pr)(qs) r=(bc)(pqrs)
|
| 1.2.32.46.62 C2 C3
D12 / D6 = C2 1, C3 : C4 C4 1
|
A4
= (C2×C2) ⋊ C3
|
< k,r | k3, r2, (kr)3 >
k=(abc) r=(ab)(cd)
The first diagram resembles a truncated tetrahedron, whose rotational symmetry group is A4.
< r,b,e | r2, g2, e3, rgrg, geree, rgegee >
r=(ab)(cd) g=(ac)(bd) e=(bcd)
The second diagram shows more clearly how the C3 (grey) acts on the C2×C2 (colour).
|
| 1.23.38 1 C22
S4 / A4 = C2 3, A4 C22 2
|
13
|
Abelian
|
C13
|
< k | k13 >
k=(abcdefghijklm)
|
| 1.1312 C13 1
C12 / 1 = C12 1, C13
1
|
14
|
Abelian
|
C14
≅ C7 × C2
|
< k | k14 >
k=(abcdefghijklmn)
< k,r | k7, r2, krk6r2 >
k=(abcdefg) r=(pq)
|
| 1.2.76.146 C14 1
C6 / 1 = C6 2, C14
1
|
Other
|
D14 = C7 ⋊ C2
|
Here are three ways of drawing a Cayley diagram for D14. The first one I regard as usefully reflecting
the structure of the group. The other two are given to show that it is possible to draw them like this,
and omitted for other dihedral groups.
< k,r | k7, r2, krkr >
k=(abcdefg) r=(bg)(cf)(de)
< r,g | r2, g2, (rg)7 >
r=(bg)(cf)(de) g=(af)(be)(cd)
< k,r,g | k7, r2, g2, kgr >
k=(abcdefg) r=(bg)(cf)(de) g=(ag)(bf)(ce)
|
| 1.27.76 1 C7
C7⋊C6 / D14 = C3 1, D14
1
|
15
|
Abelian
|
C15
≅ C5 × C3
|
< k | k15 >
k=(abcdefghijklmno)
< k,r | k3, r5, krkkrrr >
k=(abcde) r=(mno)
|
| 1.32.54.158 C15 1
C4×C2 / 1 = C4×C2 1, C15
1
|
16
|
Abelian
|
C16
|
< k | k16 >
k=(abcdefghijklmnop)
|
| 1.2.42.84.168 C16 1
C4×C2 / 1 = C4×C2 1, C16
1
|
C4 × C4
|
< k,r | k4, r4, krk-1r-1 >
k=(abcd) r=(efgh)
|
| 1.23.412 C4×C4 1
(C22×A4)⋊C2 / 1 = (C22×A4)⋊C2 2, C4 x C4
2
|
C4 × C2 × C2
|
< r,g,e | r2, g2, e4, rgrg, rere-1, gege-1 >
r=(ab) g=(cd) e=(efgh)
|
| 1.21+6.48 C4×C2×C2 1
"(((D8×C2)⋊C2)⋊C3)⋊C2" / 1 = ? 10, C4 x C2 x C2
2x2x2
|
C2 × C2 × C2 × C2
|
< r,g,b,m | r2, g2, b2, m2, rgrg, rbrb, rmrm, gbgb, gmgm, bmbm >
r=(ab) g=(cd) b=(ef) m=(gh)
|
| 1.215 C2×C2×C2×C2 1
A8 / 1 = A8 14, C2 x C2 x C2 x C2
2x2x2x2x2x2
|
C8 × C2
|
< k,r | k8, r2, krk-1r >
k=(abcdefgh) r=(ij)
Compare this diagram with those for D16, "Modular", and "Quasidihedral" below.
These four diagrams show C2 acting in all four possible ways on C8, whose
automorphism group is C2×C2.
|
| 1.23.44.88 C8×C2 1
D8×C2 / 1 = D8×C2 5, C8 x C2 2
|
Other direct products
|
D8 × C2
|
< k,r,g | k4, r2, g2, krkr, kgkkkg, rgrg >
k=(abcd) r=(ac) g=(pq)
|
| 1.21+2+8.44 C2×C2 C2
"(((C4×C2)⋊C2)⋊C2)⋊C2" / C22 = ? 11, C2 x D8
2x2x2
|
Q8 × C2
|
< r,b,g | r4, b4, gr, rrbb, rgr-1g, bgb-1g >
r=(abcd)(efgh) b=(aecg)(fbhd) g=(pq)
|
| 1.21+2.412 C2×C2 C2
"(((C24)⋊C3)⋊C2)⋊C2" / C22 = ? 12, C2 x Q8
2 2x2
|
Other
|
D16
= C8 ⋊ C2
|
< k,r | k8, r2, krkr >
k=(abcdefgh) r=(bh)(cg)(df)
|
| 1.21+8.42.84 C2 C4
"(D8×C2)⋊C2" / D8 = C22 7, D16
2
|
Modular
= C8 ⋊ C2
|
< k,r | k8, r2, krkkkr >
k=(abcdefgh) r=(bf)(dh)
< k,r | k8, r8, krkr >
|
| 1.21+2.44.88 C4 C2
D8×C2 / C22 = C22 6, (C4 x C2) : C2
1
|
Quasidihedral, a.k.a. semidihedral
= C8 ⋊ C2
|
< k,r | k8, r2, krkkkkkr >
k=(abcdefgh) r=(bd)(cg)(fh)
|
| 1.21+4.46.84 C2 C4
D8×C2 / D8 = C2 8, QD16
1
|
Dic16
a.k.a. Q16
|
< b,r | b8, r4, (br)4, rbr3b >
b=(abcdefgh)(pqrstuvw) r=(apet)(bwfs)(cvgr)(duhq)
|
| 1.2.410.84 C2 C4
(D8×C2)⋊C2 / D8 = C22 9, Q16
1
|
C4 ⋊ C4
|
< k,r | k4, r4, krkr3 >
k=(abcd) r=(bd)(efgh)
|
| 1.23.412 C2×C2 C2
C24⋊C2 / C22 = ? 4, C4 : C4
2
|
(C2 × C2) ⋊ C4
|
< r,g,e | r2, g2, e4, rgrg, ereeeg, egeeer >
r=(ab)(cd) g=(ac)(bd) e=(bc)(pqrs)
|
| 1.23+4.48 C2×C2 C2
C24⋊C2 / C22 = ? 3, (C4 x C2) : C2
2x2
|
Pauli
= D8 ⋊ C2
= Q8 ⋊ C2
= (C4×C2) ⋊ C2
|
< k,r,b | k4, r2, b2, krkr, kbkkkb, kkrbrb >
k=(abcd)(efgh) r=(bd)(eg) b=(ae)(bf)(cg)(dh)
The C2 acts on the D8 by the permutation (b,aab),(ab,aaab).
The first diagram may make it clearer what happens: there are two black-and-red D8s,
with the inner square of one rotated through π relative to the other. The second
diagram is prettier, having some of the symmetry of a cube. |
| 1.27.48 C4 C2
S4×C2 / C22 = ? 13, C4 : C4
2x2
|
17
|
Abelian
|
C17
|
< k | k17 >
k=(abcdefghijklmnopq)
|
| 1.1716 C17 1
C16 / 1 = C16 1, C17
1
|
18
|
Abelian
|
C18
= C9 × C2
|
< k | k18 >
k=(abcdefghijklmnopqr)
< k,r | k9, r2, krk-1r-1 >
k=(abcdefghi) r=(mn)
|
| 1.2.32.62.96.186 C18 1
C6 / 1 = C6 2, C18 C9 1
|
C6 × C3
= C3 × C3 × C2
|
< k,r | k6, r3, krk-1r-1 >
k=(abcdef) r=(jkl)
|
| 1.2.38.68 C6×C3 1
GL(2,3) / 1 = GL(2,3) 5, C6 x C3 C32 3
|
Other direct products
|
D6 × C3
≅ (C3 × C3) ⋊ C2
with the C2 interchanging the generators of the two C3s
|
< k,r,g | k3, r2, g3, krkr, kgkkgg, rgrgg >
k=(abc) r=(bc) g=(pqr)
< k,r,g | k3, r3, g2, krkkrr, grgkk, gkgrr >
k=(abc) r=(def) g=(ad)(be)(cf)
|
| 1.23.38.66 C3 C3
D12 / D6 = C2 3, C3 x S3 C32 3
|
Other
|
D18
|
< k,r | k9, r2, krkr >
k=(abcdefghi) r=(bi)(ch)(dg)(ef)
|
| 1.29.32.96 1 C9
"(C9⋊)⋊C2" / D18 = C3 1, D18 C9 1
|
(C3 × C3) ⋊ C2
with the C2 acting separately on the two C3s
|
< k,r,g | k3, r3, c2, krkkrr, kgkg, rgrgr >
k=(abc) r=(def) g=(bc)(ef)
|
| 1.29.38 1 C3×C3
"((C32⋊Q8)⋊C3)⋊C2" / C32⋊C2 = ? 4, (C3 x C3) : C2 C32 3
|
19
|
Abelian
|
C19
|
< k | k19 >
k=(abcdefghijklmnopqrs)
|
| 1.1918 C19 1
C18 / 1 = C18 1, C19
|
20
|
Abelian
|
C20
= C5 × C4
|
< k | k20 >
k=(abcdefghijklmnopqrst)
< k,r | k5, r4, krk-1r-1 >
k=(abcde) r=(mnop)
|
| 1.2.42.54.104.208 C20 1
C4×C2 / 1 = C4×C2 2, C20 C4 1
|
C10 × C2
= C5 × C2 × C2
|
< k,r | k10, r2, krk-1r-1 >
k=(abcdefghij) r=(mn)
There is little interest in Cayley diagrams of direct products. This one is like
a man who walks round in circles (black), and takes his hat on and off (red).
The hat does not affect the walking, and the walking does not affect the hat.
|
| 1.23.54.1012 C10×C2 1
D6×C4 / 1 = D6×C4 5, C10 x C2 C22 2
|
Other direct products
|
D20
= C10 ⋊ C2
≅ D10 × C2
|
< k,r | k10, r2, krkr >
k=(abcdefghij) r=(bj)(ci)(dh)(eg)
< k,b,g | k5, r2, g2, krkr, kgk-1g-1, rgr-1g-1 >
k=(abcde) r=(be)(cd) g=(pq)
|
| 1.21+10.54.104 C2 C5
"C2 x (C5 : C4)" / D10 = ? 4, D20 C22 2
|
Other
|
Dic20
≅ C5 ⋊C2 C4
|
< b,r | b5, r4, brbrrr >
b=(abcde)(pr)(qs) r=(be)(cd)(pqrs)
< k,r | k5, r4, krkrrr >
|
| 1.2.410.54.104 C2 C5
C2×(C5⋊C2C4) / D10 = C2 1, C5 : C4 C4 1
|
Frob20
≅ C5 ⋊C4 C4
|
< k,r | k4, r2, (k2r)5 >
k=(abcde) r=(bd)(ce)
< k,g | k5, g4, (kg)4 >
k=(abcde) g=(bced)
|
| 1.25.410.54 1 C5
C5⋊C4C4 / C5⋊C4C4 = 1 3, C5 : C4 C4 1
|
21
|
Abelian
|
C21
= C7 × C3
|
< k | k21 >
k=(abcdefghijklmnopqrstu)
< k,r | k7, r3, krk-1r-1 >
k=(abcdefg) r=(pqr)
|
| 1.32.76.2112 C21 1
C6×C2 / 1 = C6×C2 2, C21
1
|
Other
|
Frob21
≅ C7 ⋊ C3
|
< k,r | k7, r3, krk5r2 >
k=(abcdefg) r=(bce)(dgf)
|
| 1.314.76 1 C7
Frob42 / Frob21 / C2
1
|
22
|
Abelian
|
C22
= C11 × C2
|
< k | k22 >
k=(abcdefghijklmnopqrstuv)
< k,r | k11, r2, krk-1r-1 >
k=(abcdefghijk) r=(pq)
|
| 1.2.1110.2210 C22 1
C10 / 1 = C10 2, C22
1
|
Other
|
D22
= C11 ⋊ C2
|
< k,r | k11, r2, krkr >
k=(abcdefghijk) r=(bk)(cj()di)(eh)(fg)
|
| 1.211.1110 1 C11
"(C11 : C5) : C2" / D22 = C5 1, D22
1
|
23
|
Abelian
|
C23
|
< k | k23 >
k=(abcdefghijklmnopqrstuvw)
|
| 1.2322 C23 1
C22 / 1 = C22 1, C23
1
|
24
|
Abelian
|
C24
= C8 × C3
|
< k | k24 >
k=(abcdefghijklmnopqrstuvwv)
< k,r | k8, r3, krk-1r-1 >
k=(abcdefgh) r=(mn)
|
| 1.2.32.42.62.84.126.246 C24 1
C23 / 1 = C23 2, C24 C8 1
|
C12 × C2
= C6 × C4
= C4 × C3 × C2
|
< k,r | k12, r2, krk-1r-1 >
k=(abcdefghijkl) r=(pq)
< k,r | k6, r4, krk-1r-1 >
k=(abcdef) r=(pqrs)
|
| 1.23.32.44.66.128 C12×C2 1
D8×C2 / 1 = D8×C2 9, C12 x C2 C4×C2 2
|
C3 × C2 × C2 × C2
= C6 × C2 × C2
= C2 × C2 × C2 × C3
|
< r,g,e | r2, g2, e6, rgrg rere-1, gege-1 >
r=(ab) g=(cd) e=(pqrstu)
< r,g,b,e | r2, g2, b2, e3,
rgrg, gbgb, brbr, rere-1, gege-1, bebe-1, >
r=(ab) g=(cd) b=(ef) e=(ghi)
|
| 1.27.32.614 C3×C2×C2×C2 1
PSL(3,2)×C2 / 1 = PSL(3,2)×C2 15, C6 x C2 x C2 C23 2x2x2
|
Other direct products
|
D12 × C2
= D6 × C2 × C2
|
< k,r,g | k6, r2, g2, krkr, kgk-1g-1, rgr-1g-1 >
k=(abcdef) r=(bf)(ce) g=(pq)
|
| 1.215.32.66 C2×C2 C3
S4×D6 / D6 = S4 14, C2 x C2 x S3 C23 2x2x2
|
D8 × C3
|
< k,r,g | k4, r2, g3, krkr, kgk-1g-1, rgr-1g-1 >
k=(abcd) r=(bd) g=(pqr)
|
| 1.25.32.42.610.124 C3×C2 C2
D8×C2 / C22 = ? 10, C3 x D8 D8 2
|
D6 × C4
|
< k,r,g | k3, r2, g4, krkr, kgk-1g-1, rgr-1g-1 >
k=(abc) r=(bc) g=(pqrs)
|
| 1.27.32.48.62.124 C4 C3
S3×C22 / S3 = ? 5, C4 x S3 C4×C2 2
|
Dic12 × C2
≅ C6 ⋊C2 C4
|
< b,r,g | b6, r4, g2, brbbbr, gbgb-1, grgr-1 >
b=(abc)(mo)(np) r=(bc)(mnop) g=(st)
< k,r | k6, r4, krkr3 >
k=(abcdef) r=(bf)(ce)(pqrs)
|
| 1.21+2.32.412.66 C22 C3
D8×D6 / D6 = ? 7, C2 x (C3 : C4) C4×C2 2
|
Q8 × C3
|
< r,b,g | r4, b4, g3, rrbb, rgr-1g-1, bgb-1g-1 >
r=(abcd)(efgh) b=(aecg)(fbhd) g=(pqr)
These Cayley diagrams of direct products are tedious and uninformative.
|
| 1.2.32.46.62.1212 C3×C2 C2
S4×C2 / C22 = ? 11, C3 x Q8 Q8 1
|
A4 × C2
≅ (C2×C2×C2) ⋊ C3
|
< k,r | k3, r2, (kr)3 central, (kr)6 >
k=(abc) r=(ab)(cd)(pq)
< k,r,g | k3, r2, g2, (kr)3, kgk-1g-1, rgr-1g-1 >
k=(abc) r=(ab)(cd) g=(pq)
< r,g,b,e | r2, g2, b2, e3,
rgrg, gbgb, brbr, gere-1, bege-1, rebe-1 >
r=(ab) g=(cd) b=(rf) e=(ace)(bdf)
|
| 1.27.38.68 C2 C2×C2
S4 / A4 = C2 13, C2 x A4 C23 2
|
Other
|
D24
= C12 ⋊ C2
|
< k,r | k12, r2, krkr>
k=(abcdefghijkl) r=(bl)(ck)(dj)(ei)(fh)
|
| 1.21+12.32.42.62.124 C2 C6
D8×C3 / D12 = C2 6, D24 D8 2
|
Dic24
|
< b,r | b12, r4, brbrrr >
b=(abcdefghijkl)(mnopqrstuvwx) r=(asgm)(brhx)(cqiw)(dpjv)(eoku)(fnlt)
|
| 1.2.32.42+12.62.124 C2 C6
D8×C3 / D12 = C2 4, C3 : Q8 Q8 1
|
C3 ⋊ C8
|
< k,r | k3, r8, krkr7 >
k=(abc) r=(bc)(defghijk)
|
| 1.2.32.42.62.812.124 C4 C3
D6×C22 / S3 = D6×C22 1, C3 : C8 C8 1
|
SL(2,3)
≅ Q8 ⋊ C3
|
< k,r | k6, r4, krkrkr >
k=(abcdef)(gh) r=(gahd)(ecbf)
< r,b,g,e | r4, b4, g4, e3,
rrbb, bbgg, ggrr, rbgrbg, rebege>
|
| 1.2.38.46.68 C2 Q8
S4 / A4 = C2 3, SL(2,3) Q8 1
|
C3 ⋊ D8
|
< k,r,g | k3, g4, r2,
gkgggk, rgrg, rkr-1k-1 >
k=(abc) g=(ghij)(bc) r=(hj) |
| 1.21+2+6.32.46.66 C2 C6
D6×C22 / D12 = C2 8, (C6 x C2) : C2 D8 2
|
S4
≅ (C2×C2) ⋊ D6
|
< k,r | k4, r2, (kr)3 >
k=(abcd) r=(ab)
< k,r | k3, r2, (kr)4 >
k=(abc) r=(cd)
< b,g,r,e | b2, g2, r2, e3,
bgbg, rgrb, rbrg, ege2b, ebe2bg >
b=(hi)(jk) g=(hj)(ik) r=(ij) e=(hij)
|
| 1.23+6.38.46 1 A4
S4 / S4 = 1 12, S4 D8 2
|
25
|
Abelian
|
C25
|
< k | k25 >
k=(abcdefghijklmnopqrstuvwxy)
|
| 1.54.2520 C25 1
C20 / 1 = C20 1, C25
1
|
C5 × C5
|
< k,r | k5, r5, krk-1r-1>
k=(abcde) r=(fghij)
|
| 1.524 C5×C5 1
GL(2,5) / 1 = GL(2,5) 2, C5 x C5 1 5
|
26
|
Abelian
|
C26
= C13 × C2
|
< k | k26 >
k=(abcdefghijklmnopqrstuvwxyz)
< k,r | k13, r2, krk-1r-1 >
k=(abcdefghijklm) r=(pq)
|
| 1.2.1312.2612 C26 1
C12 / 1 = C12 2, C26
1
|
Other
|
D26
= C13 ⋊ C2
|
< k,r | k11, r2, krkr >
k=(abcdefghijklm) r=(bm)(cl)(dk)(ej)(fi)(gh)
|
| 1.213.1312 1 C13
"(C13 : C4) : C3" / D26 = C6 1, D26
1
|
27
|
Abelian
|
C27
|
< k | k27 >
k=(abcdefghijklmnopqrstuvwxyzæ)
|
| 1.32.96.2718 C27 1
C18 / 1 = C18 1, C27
1
|
C9 × C3
|
< k,r | k9, r3, krk-1r-1 >
k=(abcdefghi) r=(pqr)
|
| 1.38.918 C9×C3 1
"C2 x (((C3 x C3) : C3) : C2)" / 1 = ? 2, C9 x C3
3
|
C3 × C3 × C3
|
< k,r,g | k3, r3, g3,
krk-1r-1, rgr-1g-1, gkg-1g-1 >
k=(abc) r=(def) g=(ghi)
|
| 1.327 C33 1
Gl(3,3) / 1 = GL(3,3) 5, C3 x C3 x C3
3x3x3
|
Other
|
C9 ⋊ C3
|
< k,r | k9, r3,
krk5r-1 >
k=(abcdefghi) r=(beh)(cif)
|
| 1.32+6.918 C3 C3
"((C3 x C3) : C3) : C2" / C32 = ? 4, C9 : C3
1
|
(C3 × C3) ⋊ C3
|
< k,r,g | k3, r3, g3,
krk-1r-1, rgkkgg, krgrrgg >
k=(abc)(def)(ghi) r=(adg)(beh)(cfi) g=(bdi)(cge)
|
| 1.32+24 C3 C3
"(((C3 x C3) : Q8) : C3) : C2" / C32 = ? 3, (C3 x C3) : C3
3x3
|
28
|
Abelian
|
C28
= C7 × C4
|
< k | k28 >
k=(abcdefghijklmnopqrstuvwxyzæð)
< k,r | k7, r4, krk-1r-1 >
k=(abcdefg) r=(mnop)
|
| 1.2.42.76.146.2812 C28 1
C6×C2 / 1 = C6×C2 2, C28 C4 1
|
C14 × C2
= C7 × C2 × C2
|
< k,r | k14, r2, krk-1r-1 >
k=(abcdefg) r=(pq)
|
| 1.23.76.1418 C14×C2 1
D6×C6 / 1 = D6×C6 4, C14 x C2 C22 2
|
Other direct products
|
D28
= C14 ⋊ C2
≅ D14 × C2
|
< k,r | k14, r2, krkr >
k=(abcdefghijklmn) r=(bn)(cm)(dl)(ek)(fj)(gj)
< k,r,g | k7, r2, g2,
krkr, kgk-1g-1, rgr-1g-1 >
k=(abcdefg) r=(bg)(cf)(de) g=(pq)
|
| 1.21+2+12.76.146 C2 C7
(C7⋊C6)×C2 / D14 = C6 3, D28 C22 2
|
Other
|
Dic28
≅ C7 ⋊C2 C4
|
< b,r | b7, r4, brbrrr >
b=(abcdefg)(pr)(qs) r=(bg)(cf)(de)(pqrs)
|
| 1.2.414.76.146 C2 C7
(C7⋊C6)×C2 / D14 = C6 1, C7 : C4 C4 1
|
29
|
Abelian
|
C29
|
< k | k29 >
k=(abcdefghijklmnopqrstuvwxyzæðñ)
|
| 1.2928 C29 1
C28 / 1 = C28 1, C29
1
|
30
|
Abelian
|
C30
= C15 × C2
= C10 × C3
= C6 × C5
= C5 × C3 × C2
|
< k | k30 >
k=(abcdefghijklmnopqrstuvwxyzæðñç)
< k,r | k15, r2, krk-1r-1 >
k=(abcdefghijklmno) r=(pq)
< k,r | k10, r3, krk-1r-1 >
k=(abcdefghij) r=(klm)
< k,r | k6, r5, krk-1r-1 >
k=(abcdef) r=(ghijk)
|
| 1.2.32.54.62.104.158.308 C30 1
C4×C2 / 1 = C4×C2 4, C30
1
|
Other direct products
|
D10 × C3
|
< k,r,g | k5, r2, g3, krkr, kgk-1g-1, rgr-1g-1 >
k=(abcde) r=(be)(cd) g=(pq)
|
| 1.25.32.54.610.158 C3 C5
(C5⋊C4)×C2 / D10 = C22 2, C3 x D10
1
|
D6 × C5
|
< k,r,g | k3, r2, g5, krkr, kgk-1g-1, rgr-1g-1 >
k=(abc) r=(bc) g=(pqrst)
|
| 1.23.32.54.1012.158 C5 C3
D6×C4 / D6 = C4 1, C5 x S3
1
|
Other
|
D30
C15 ⋊ C2
|
< k,r | k15, r2, abab >
k=(abcdefghijklmno) r=(bo)(cn)(dm)(el)(fk)(gj)(hi)
|
| 1.215.32.54.158 1 C15
(C5⋊C4)×D6 / D6 = ? 3, D30
1
|
31
|
Abelian
|
C31
|
< k | k31 >
k=(abcdefghijklmnopqrstuvwxyzæðñçþ)
|
| 1.3130 C31 1
C30 / 1 = C30 1, C31
1
|