C13

C13 is Abelian and simple.

Statistics

Order of group13
GAP identifier13,1
Presentation< k | k13 >
Orders of elements1 of 1, 12*1 of 13
CentreC13
Derived subgroup1
Automorphism groupC12
Inner automorphism group1
"Out" (quotient of above)C12
Schur multiplier1
 

Permutation Diagrams


Sharply 1-transitive
on 13 points, even.

Cayley Graphs



the di-13gon, type I


Index to regular maps