Regular maps in the orientable surface of genus 53

NameSchläfliV / F / EmV, mFnotes C&D no.imageswire-
frames
C53.1{4,8}104104 / 208 / 416 2,1 replete Chiral C53.100
C53.1′{8,4}104208 / 104 / 416 1,2 replete Chiral C53.1′00
C53.2{4,8}52104 / 208 / 416 2,1 replete Chiral C53.200
C53.2′{8,4}52208 / 104 / 416 1,2 replete Chiral C53.2′00
C53.5{6,6}52104 / 104 / 312 1,2 replete Chiral C53.500
C53.5′{6,6}52104 / 104 / 312 2,1 replete Chiral C53.5′00
C53.3{4,12}15652 / 156 / 312 3,1 replete Chiral C53.300
C53.3′{12,4}156156 / 52 / 312 1,3 replete Chiral C53.3′00
C53.4{4,20}13026 / 130 / 260 5,1 replete Chiral C53.400
C53.4′{20,4}130130 / 26 / 260 1,5 replete Chiral C53.4′00
R53.1{4,30}6016 / 120 / 240 5,1 replete R53.100
R53.1′{30,4}60120 / 16 / 240 1,5 replete R53.1′00
R53.2{4,56}568 / 112 / 224 14,1 replete R53.200
R53.2′{56,4}56112 / 8 / 224 1,14 replete R53.2′00
R53.3{4,56}288 / 112 / 224 14,1 replete R53.300
R53.3′{56,4}28112 / 8 / 224 1,14 replete R53.3′00
R53.4{4,108}1084 / 108 / 216 54,2series m replete R53.4(see series m)0
R53.4′{108,4}108108 / 4 / 216 2,54series l replete R53.4′(see series l)0
R53.5{4,212}1062 / 106 / 212 212,2series h Faces share vertices with themselves R53.5(see series h)0
R53.5′{212,4}106106 / 2 / 212 2,212series j Faces share vertices with themselves R53.5′(see series j)0
C53.7{8,8}5252 / 52 / 208 2,2 replete Chiral C53.700
C53.8{8,8}5252 / 52 / 208 2,2 replete Chiral C53.800
C53.6{6,15}13026 / 65 / 195 5,1 replete Chiral C53.600
C53.6′{15,6}13065 / 26 / 195 1,5 replete Chiral C53.6′00
R53.6{6,16}4824 / 64 / 192 4,1 replete R53.600
R53.6′{16,6}4864 / 24 / 192 1,4 replete R53.6′00
R53.7{6,16}4824 / 64 / 192 4,1 replete R53.700
R53.7′{16,6}4864 / 24 / 192 1,4 replete R53.7′00
R53.8{6,16}2424 / 64 / 192 2,2 replete R53.800
R53.8′{16,6}2464 / 24 / 192 2,2 replete R53.8′00
R53.9{6,42}288 / 56 / 168 14,1 replete R53.900
R53.9′{42,6}2856 / 8 / 168 1,14 replete R53.9′00
R53.11{8,20}4016 / 40 / 160 5,2 replete R53.1100
R53.11′{20,8}4040 / 16 / 160 2,5 replete R53.11′00
R53.12{8,20}2016 / 40 / 160 5,2 replete R53.1200
R53.12′{20,8}2040 / 16 / 160 2,5 replete R53.12′00
R53.10{6,159}1062 / 53 / 159 159,3series p Faces share vertices with themselves R53.10(see series p)0
R53.10′{159,6}10653 / 2 / 159 3,159series q Faces share vertices with themselves R53.10′(see series q)0
C53.10{12,12}2626 / 26 / 156 2,4 replete Chiral C53.1000
C53.10′{12,12}2626 / 26 / 156 4,2 replete Chiral C53.10′00
C53.11{12,12}2626 / 26 / 156 1,1 replete singular Chiral C53.1100
C53.11′{12,12}2626 / 26 / 156 1,1 replete singular Chiral C53.11′00
C53.9{12,12}2626 / 26 / 156 3,3 replete Chiral C53.900
R53.13{8,72}364 / 36 / 144 36,4 replete R53.1300
R53.13′{72,8}3636 / 4 / 144 4,36 replete R53.13′00
R53.14{8,72}364 / 36 / 144 36,4 replete R53.1400
R53.14′{72,8}3636 / 4 / 144 4,36 replete R53.14′00
R53.15{12,44}666 / 22 / 132 22,6 replete R53.1500
R53.15′{44,12}6622 / 6 / 132 6,22 replete R53.15′00
C53.13{20,20}2613 / 13 / 130 5,5 replete Chiral C53.1300
C53.12{16,32}328 / 16 / 128 8,4 replete Chiral C53.1200
C53.12′{32,16}3216 / 8 / 128 4,8 replete Chiral C53.12′00
R53.16{16,32}328 / 16 / 128 8,8 replete R53.1600
R53.16′{32,16}3216 / 8 / 128 8,8 replete R53.16′00
R53.17{16,32}328 / 16 / 128 8,8 replete R53.1700
R53.17′{32,16}3216 / 8 / 128 8,8 replete R53.17′00
R53.18{16,32}328 / 16 / 128 16,8 replete R53.1800
R53.18′{32,16}3216 / 8 / 128 8,16 replete R53.18′00
R53.19{16,32}328 / 16 / 128 16,8 replete R53.1900
R53.19′{32,16}3216 / 8 / 128 8,16 replete R53.19′00
R53.23{30,30}48 / 8 / 120 10,10 replete R53.2300
R53.21{24,40}306 / 10 / 120 20,12 replete R53.2100
R53.21′{40,24}3010 / 6 / 120 12,20 replete R53.21′00
R53.22{24,40}606 / 10 / 120 20,12 replete R53.2200
R53.22′{40,24}6010 / 6 / 120 12,20 replete R53.22′00
R53.20{20,60}124 / 12 / 120 30,10 replete R53.2000
R53.20′{60,20}1212 / 4 / 120 10,30 replete R53.20′00
R53.24{56,56}44 / 4 / 112 28,28 replete R53.2400
R53.25{56,56}44 / 4 / 112 28,28 replete R53.2500
R53.27{108,108}22 / 2 / 108 108,108series k trivial Faces share vertices with themselves R53.27(see series k)0
R53.26{107,214}21 / 2 / 107 214,107series z trivial Faces share vertices with themselves Vertices share edges with themselves R53.26(see series z)0
R53.26′{214,107}22 / 1 / 107 107,214series i trivial Faces share vertices with themselves Faces share edges with themselves R53.26′(see series i)0
R53.28{212,212}21 / 1 / 106 212,212series s trivial Faces share edges with themselves Faces share vertices with themselves Vertices share edges with themselves R53.28(see series s)0

Other Regular Maps

General Index