C53.10′

Statistics

genus c53, orientable
Schläfli formula c{12,12}
V / F / E c 26 / 26 / 156
notesreplete Chiral
vertex, face multiplicity c4, 2
Petrie polygons
12, each with 26 edges
rotational symmetry group312 elements.
full symmetry group312 elements.
its presentation c< r, s | (sr)2, rs4rs‑2, rs2r‑1s2r4, s12, sr‑3sr‑1sr‑2sr‑2  >
C&D number cC53.10′
The statistics marked c are from the published work of Professor Marston Conder.

Relations to other Regular Maps

Its dual is C53.10.

List of regular maps in orientable genus 53.

Underlying Graph

Its skeleton is 4 . torus-h-2-4.

Other Regular Maps

General Index