Regular maps in the orientable surface of genus 65

NameSchläfliV / F / EmV, mFnotes C&D no.imageswire-
frames
R65.1{3,8}12384 / 1024 / 1536 1,1 replete singular R65.100
R65.1′{8,3}121024 / 384 / 1536 1,1 replete singular R65.1′00
R65.4{4,5}10512 / 640 / 1280 1,1 replete singular R65.400
R65.4′{5,4}10640 / 512 / 1280 1,1 replete singular R65.4′00
R65.2{3,10}10192 / 640 / 960 1,1 replete singular R65.200
R65.2′{10,3}10640 / 192 / 960 1,1 replete singular R65.2′00
C65.1{4,6}48256 / 384 / 768 1,1 replete singular Chiral C65.100
C65.1′{6,4}48384 / 256 / 768 1,1 replete singular Chiral C65.1′00
R65.10{4,6}24256 / 384 / 768 1,1 replete singular R65.1000
R65.10′{6,4}24384 / 256 / 768 1,1 replete singular R65.10′00
R65.11{4,6}12256 / 384 / 768 1,1 replete singular R65.1100
R65.11′{6,4}12384 / 256 / 768 1,1 replete singular R65.11′00
R65.12{4,6}12256 / 384 / 768 1,1 replete singular R65.1200
R65.12′{6,4}12384 / 256 / 768 1,1 replete singular R65.12′00
R65.5{4,6}12256 / 384 / 768 1,1 replete singular R65.500
R65.5′{6,4}12384 / 256 / 768 1,1 replete singular R65.5′00
R65.6{4,6}6256 / 384 / 768 1,1 replete singular R65.600
R65.6′{6,4}6384 / 256 / 768 1,1 replete singular R65.6′00
R65.7{4,6}12256 / 384 / 768 1,1 replete singular R65.700
R65.7′{6,4}12384 / 256 / 768 1,1 replete singular R65.7′00
R65.8{4,6}24256 / 384 / 768 1,1 replete singular R65.800
R65.8′{6,4}24384 / 256 / 768 1,1 replete singular R65.8′00
R65.9{4,6}12256 / 384 / 768 1,1 replete singular R65.900
R65.9′{6,4}12384 / 256 / 768 1,1 replete singular R65.9′00
R65.3{3,12}16128 / 512 / 768 1,1 replete singular R65.300
R65.3′{12,3}16512 / 128 / 768 1,1 replete singular R65.3′00
R65.48{5,5}8256 / 256 / 640 1,1 replete singular R65.4800
C65.2{4,8}16128 / 256 / 512 1,1 replete singular Chiral C65.200
C65.2′{8,4}16256 / 128 / 512 1,1 replete singular Chiral C65.2′00
C65.3{4,8}8128 / 256 / 512 1,1 replete singular Chiral C65.300
C65.3′{8,4}8256 / 128 / 512 1,1 replete singular Chiral C65.3′00
R65.13{4,8}16128 / 256 / 512 1,1 replete singular R65.1300
R65.13′{8,4}16256 / 128 / 512 1,1 replete singular R65.13′00
R65.14{4,8}16128 / 256 / 512 2,1 replete R65.1400
R65.14′{8,4}16256 / 128 / 512 1,2 replete R65.14′00
R65.15{4,8}16128 / 256 / 512 1,1 replete singular R65.1500
R65.15′{8,4}16256 / 128 / 512 1,1 replete singular R65.15′00
R65.16{4,8}16128 / 256 / 512 1,1 replete singular R65.1600
R65.16′{8,4}16256 / 128 / 512 1,1 replete singular R65.16′00
R65.17{4,8}8128 / 256 / 512 1,1 replete singular R65.1700
R65.17′{8,4}8256 / 128 / 512 1,1 replete singular R65.17′00
R65.18{4,8}16128 / 256 / 512 1,1 replete singular R65.1800
R65.18′{8,4}16256 / 128 / 512 1,1 replete singular R65.18′00
R65.19{4,8}16128 / 256 / 512 1,1 replete singular R65.1900
R65.19′{8,4}16256 / 128 / 512 1,1 replete singular R65.19′00
R65.20{4,8}16128 / 256 / 512 1,1 replete singular R65.2000
R65.20′{8,4}16256 / 128 / 512 1,1 replete singular R65.20′00
R65.21{4,8}16128 / 256 / 512 1,1 replete singular R65.2100
R65.21′{8,4}16256 / 128 / 512 1,1 replete singular R65.21′00
R65.22{4,8}8128 / 256 / 512 1,1 replete singular R65.2200
R65.22′{8,4}8256 / 128 / 512 1,1 replete singular R65.22′00
R65.23{4,8}8128 / 256 / 512 1,1 replete singular R65.2300
R65.23′{8,4}8256 / 128 / 512 1,1 replete singular R65.23′00
R65.24{4,8}32128 / 256 / 512 2,1 replete R65.2400
R65.24′{8,4}32256 / 128 / 512 1,2 replete R65.24′00
C65.7{5,6}10160 / 192 / 480 1,1 replete singular Chiral C65.700
C65.7′{6,5}10192 / 160 / 480 1,1 replete singular Chiral C65.7′00
R65.49{5,6}10160 / 192 / 480 1,1 replete singular R65.4900
R65.49′{6,5}10192 / 160 / 480 1,1 replete singular R65.49′00
C65.10{6,6}8128 / 128 / 384 1,1 replete singular Chiral C65.1000
C65.10′{6,6}8128 / 128 / 384 1,1 replete singular Chiral C65.10′00
C65.8{6,6}16128 / 128 / 384 1,1 replete singular Chiral C65.800
C65.8′{6,6}16128 / 128 / 384 1,1 replete singular Chiral C65.8′00
C65.9{6,6}16128 / 128 / 384 1,1 replete singular Chiral C65.900
R65.50{6,6}16128 / 128 / 384 2,1 replete R65.5000
R65.50′{6,6}16128 / 128 / 384 1,2 replete R65.50′00
R65.51{6,6}8128 / 128 / 384 1,1 replete singular R65.5100
R65.52{6,6}16128 / 128 / 384 1,1 replete singular R65.5200
R65.52′{6,6}16128 / 128 / 384 1,1 replete singular R65.52′00
R65.53{6,6}4128 / 128 / 384 1,1 replete singular R65.5300
R65.54{6,6}8128 / 128 / 384 1,1 replete singular R65.5400
R65.55{6,6}8128 / 128 / 384 1,1 replete singular R65.5500
R65.56{6,6}8128 / 128 / 384 1,1 replete singular R65.5600
R65.57{6,6}8128 / 128 / 384 1,1 replete singular R65.5700
R65.58{6,6}8128 / 128 / 384 1,1 replete singular R65.5800
R65.59{6,6}8128 / 128 / 384 1,1 replete singular R65.5900
C65.4{4,12}1264 / 192 / 384 2,1 replete Chiral C65.400
C65.4′{12,4}12192 / 64 / 384 1,2 replete Chiral C65.4′00
C65.5{4,12}1264 / 192 / 384 2,1 replete Chiral C65.500
C65.5′{12,4}12192 / 64 / 384 1,2 replete Chiral C65.5′00
C65.6{4,12}2464 / 192 / 384 2,1 replete Chiral C65.600
C65.6′{12,4}24192 / 64 / 384 1,2 replete Chiral C65.6′00
R65.25{4,12}1264 / 192 / 384 2,1 replete R65.2500
R65.25′{12,4}12192 / 64 / 384 1,2 replete R65.25′00
R65.26{4,12}1264 / 192 / 384 2,1 replete R65.2600
R65.26′{12,4}12192 / 64 / 384 1,2 replete R65.26′00
R65.27{4,12}664 / 192 / 384 2,1 replete R65.2700
R65.27′{12,4}6192 / 64 / 384 1,2 replete R65.27′00
R65.28{4,12}1264 / 192 / 384 2,1 replete R65.2800
R65.28′{12,4}12192 / 64 / 384 1,2 replete R65.28′00
R65.29{4,12}1264 / 192 / 384 2,1 replete R65.2900
R65.29′{12,4}12192 / 64 / 384 1,2 replete R65.29′00
R65.30{4,12}1264 / 192 / 384 2,1 replete R65.3000
R65.30′{12,4}12192 / 64 / 384 1,2 replete R65.30′00
R65.31{4,12}2464 / 192 / 384 2,1 replete R65.3100
R65.31′{12,4}24192 / 64 / 384 1,2 replete R65.31′00
R65.32{4,12}2464 / 192 / 384 2,1 replete R65.3200
R65.32′{12,4}24192 / 64 / 384 1,2 replete R65.32′00
R65.33{4,12}1264 / 192 / 384 1,1 replete singular R65.3300
R65.33′{12,4}12192 / 64 / 384 1,1 replete singular R65.33′00
R65.34{4,12}2464 / 192 / 384 1,1 replete singular R65.3400
R65.34′{12,4}24192 / 64 / 384 1,1 replete singular R65.34′00
R65.35{4,12}2464 / 192 / 384 1,1 replete singular R65.3500
R65.35′{12,4}24192 / 64 / 384 1,1 replete singular R65.35′00
R65.36{4,12}4864 / 192 / 384 3,1 replete R65.3600
R65.36′{12,4}48192 / 64 / 384 1,3 replete R65.36′00
R65.60{6,7}2896 / 112 / 336 1,1 replete singular R65.6000
R65.60′{7,6}28112 / 96 / 336 1,1 replete singular R65.60′00
R65.37{4,20}1032 / 160 / 320 4,1 replete R65.3700
R65.37′{20,4}10160 / 32 / 320 1,4 replete R65.37′00
R65.38{4,20}1032 / 160 / 320 4,1 replete R65.3800
R65.38′{20,4}10160 / 32 / 320 1,4 replete R65.38′00
R65.39{4,20}2032 / 160 / 320 4,1 replete R65.3900
R65.39′{20,4}20160 / 32 / 320 1,4 replete R65.39′00
R65.40{4,20}2032 / 160 / 320 4,1 replete R65.4000
R65.40′{20,4}20160 / 32 / 320 1,4 replete R65.40′00
R65.41{4,20}4032 / 160 / 320 5,1 replete R65.4100
R65.41′{20,4}40160 / 32 / 320 1,5 replete R65.41′00
R65.42{4,36}3616 / 144 / 288 6,1 replete R65.4200
R65.42′{36,4}36144 / 16 / 288 1,6 replete R65.42′00
R65.43{4,36}7216 / 144 / 288 6,1 replete R65.4300
R65.43′{36,4}72144 / 16 / 288 1,6 replete R65.43′00
R65.44{4,36}7216 / 144 / 288 9,1 replete R65.4400
R65.44′{36,4}72144 / 16 / 288 1,9 replete R65.44′00
R65.45{4,68}688 / 136 / 272 17,1 replete R65.4500
R65.45′{68,4}68136 / 8 / 272 1,17 replete R65.45′00
R65.46{4,132}1324 / 132 / 264 66,2θ replete R65.4600
R65.46′{132,4}132132 / 4 / 264 2,66θ' replete R65.46′(see ser θ')0
R65.47{4,260}1302 / 130 / 260 260,2ζ'°' Faces share vertices with themselves R65.4700
R65.47′{260,4}130130 / 2 / 260 2,260ζ'° Faces share vertices with themselves R65.47′(see ser ζ'°)0
C65.12{8,8}1664 / 64 / 256 1,1 replete singular Chiral C65.1200
C65.13{8,8}864 / 64 / 256 1,1 replete singular Chiral C65.1300
C65.14{8,8}864 / 64 / 256 1,1 replete singular Chiral C65.1400
C65.14′{8,8}864 / 64 / 256 1,1 replete singular Chiral C65.14′00
R65.64{8,8}864 / 64 / 256 1,1 replete singular R65.6400
R65.65{8,8}864 / 64 / 256 1,2 replete R65.6500
R65.65′{8,8}864 / 64 / 256 2,1 replete R65.65′00
R65.66{8,8}864 / 64 / 256 2,2 replete R65.6600
R65.67{8,8}864 / 64 / 256 1,1 replete singular R65.6700
R65.68{8,8}864 / 64 / 256 1,2 replete R65.6800
R65.68′{8,8}864 / 64 / 256 2,1 replete R65.68′00
R65.69{8,8}864 / 64 / 256 1,2 replete R65.6900
R65.69′{8,8}864 / 64 / 256 2,1 replete R65.69′00
R65.70{8,8}864 / 64 / 256 1,2 replete R65.7000
R65.70′{8,8}864 / 64 / 256 2,1 replete R65.70′00
R65.71{8,8}1664 / 64 / 256 1,2 replete R65.7100
R65.71′{8,8}1664 / 64 / 256 2,1 replete R65.71′00
R65.72{8,8}1664 / 64 / 256 2,2 replete R65.7200
R65.72′{8,8}1664 / 64 / 256 2,2 replete R65.72′00
R65.73{8,8}864 / 64 / 256 1,2 replete R65.7300
R65.73′{8,8}864 / 64 / 256 2,1 replete R65.73′00
R65.74{8,8}1664 / 64 / 256 1,2 replete R65.7400
R65.74′{8,8}1664 / 64 / 256 2,1 replete R65.74′00
R65.75{8,8}1664 / 64 / 256 1,2 replete R65.7500
R65.75′{8,8}1664 / 64 / 256 2,1 replete R65.75′00
R65.76{8,8}864 / 64 / 256 1,2 replete R65.7600
R65.76′{8,8}864 / 64 / 256 2,1 replete R65.76′00
R65.77{8,8}864 / 64 / 256 1,2 replete R65.7700
R65.77′{8,8}864 / 64 / 256 2,1 replete R65.77′00
R65.78{8,8}1664 / 64 / 256 2,2 replete R65.7800
R65.79{8,8}1664 / 64 / 256 2,2 replete R65.7900
R65.80{8,8}1664 / 64 / 256 2,2 replete R65.8000
R65.81{8,8}864 / 64 / 256 1,1 replete singular R65.8100
R65.81′{8,8}864 / 64 / 256 1,1 replete singular R65.81′00
R65.82{8,8}464 / 64 / 256 1,1 replete singular R65.8200
R65.83{8,8}864 / 64 / 256 1,1 replete singular R65.8300
R65.84{8,8}864 / 64 / 256 1,1 replete singular R65.8400
R65.85{8,8}864 / 64 / 256 1,1 replete singular R65.8500
R65.86{8,8}464 / 64 / 256 1,1 replete singular R65.8600
R65.87{8,8}464 / 64 / 256 1,1 replete singular R65.8700
C65.11{6,15}1032 / 80 / 240 1,1 replete singular Chiral C65.1100
C65.11′{15,6}1080 / 32 / 240 1,1 replete singular Chiral C65.11′00
R65.61{6,15}4032 / 80 / 240 5,1 replete R65.6100
R65.61′{15,6}4080 / 32 / 240 1,5 replete R65.61′00
R65.62{6,51}688 / 68 / 204 17,1 replete R65.6200
R65.62′{51,6}6868 / 8 / 204 1,17 replete R65.62′00
R65.63{6,195}1302 / 65 / 195 195,3δ Faces share vertices with themselves R65.6300
R65.63′{195,6}13065 / 2 / 195 3,195δ' Faces share vertices with themselves R65.63′(see ser δ')0
C65.15{12,12}832 / 32 / 192 2,2 replete Chiral C65.1500
C65.16{12,12}832 / 32 / 192 2,2 replete Chiral C65.1600
C65.17{12,12}832 / 32 / 192 2,2 replete Chiral C65.1700
R65.112{12,12}832 / 32 / 192 2,2 replete R65.11200
R65.113{12,12}832 / 32 / 192 2,2 replete R65.11300
R65.114{12,12}832 / 32 / 192 2,2 replete R65.11400
R65.115{12,12}832 / 32 / 192 2,2 replete R65.11500
R65.116{12,12}832 / 32 / 192 2,2 replete R65.11600
R65.117{12,12}432 / 32 / 192 2,2 replete R65.11700
R65.118{12,12}832 / 32 / 192 2,2 replete R65.11800
R65.119{12,12}432 / 32 / 192 2,2 replete R65.11900
R65.120{12,12}832 / 32 / 192 4,2 replete R65.12000
R65.120′{12,12}832 / 32 / 192 2,4 replete R65.120′00
R65.121{12,12}832 / 32 / 192 2,2 replete R65.12100
R65.122{12,12}832 / 32 / 192 1,1 replete singular R65.12200
R65.123{12,12}432 / 32 / 192 1,1 replete singular R65.12300
R65.124{12,12}832 / 32 / 192 2,4 replete R65.12400
R65.124′{12,12}832 / 32 / 192 4,2 replete R65.124′00
R65.125{12,12}832 / 32 / 192 3,3 replete R65.12500
R65.100{8,24}2416 / 48 / 192 6,2 replete R65.10000
R65.100′{24,8}2448 / 16 / 192 2,6 replete R65.100′00
R65.101{8,24}2416 / 48 / 192 6,2 replete R65.10100
R65.101′{24,8}2448 / 16 / 192 2,6 replete R65.101′00
R65.102{8,24}2416 / 48 / 192 6,2 replete R65.10200
R65.102′{24,8}2448 / 16 / 192 2,6 replete R65.102′00
R65.103{8,24}1216 / 48 / 192 6,2 replete R65.10300
R65.103′{24,8}1248 / 16 / 192 2,6 replete R65.103′00
R65.104{8,24}2416 / 48 / 192 6,2 replete R65.10400
R65.104′{24,8}2448 / 16 / 192 2,6 replete R65.104′00
R65.105{8,24}1216 / 48 / 192 3,2 replete R65.10500
R65.105′{24,8}1248 / 16 / 192 2,3 replete R65.105′00
R65.106{8,24}2416 / 48 / 192 3,2 replete R65.10600
R65.106′{24,8}2448 / 16 / 192 2,3 replete R65.106′00
R65.107{8,24}2416 / 48 / 192 6,2 replete R65.10700
R65.107′{24,8}2448 / 16 / 192 2,6 replete R65.107′00
R65.108{8,24}2416 / 48 / 192 6,1 replete R65.10800
R65.108′{24,8}2448 / 16 / 192 1,6 replete R65.108′00
R65.109{8,24}1216 / 48 / 192 6,1 replete R65.10900
R65.109′{24,8}1248 / 16 / 192 1,6 replete R65.109′00
R65.88{8,24}2416 / 48 / 192 8,2 replete R65.8800
R65.88′{24,8}2448 / 16 / 192 2,8 replete R65.88′00
R65.89{8,24}2416 / 48 / 192 8,2 replete R65.8900
R65.89′{24,8}2448 / 16 / 192 2,8 replete R65.89′00
R65.90{8,24}1216 / 48 / 192 8,2 replete R65.9000
R65.90′{24,8}1248 / 16 / 192 2,8 replete R65.90′00
R65.91{8,24}1216 / 48 / 192 8,2 replete R65.9100
R65.91′{24,8}1248 / 16 / 192 2,8 replete R65.91′00
R65.92{8,24}2416 / 48 / 192 4,2 replete R65.9200
R65.92′{24,8}2448 / 16 / 192 2,4 replete R65.92′00
R65.93{8,24}2416 / 48 / 192 4,2 replete R65.9300
R65.93′{24,8}2448 / 16 / 192 2,4 replete R65.93′00
R65.94{8,24}616 / 48 / 192 4,2 replete R65.9400
R65.94′{24,8}648 / 16 / 192 2,4 replete R65.94′00
R65.95{8,24}1216 / 48 / 192 4,2 replete R65.9500
R65.95′{24,8}1248 / 16 / 192 2,4 replete R65.95′00
R65.96{8,24}1216 / 48 / 192 4,2 replete R65.9600
R65.96′{24,8}1248 / 16 / 192 2,4 replete R65.96′00
R65.97{8,24}1216 / 48 / 192 4,2 replete R65.9700
R65.97′{24,8}1248 / 16 / 192 2,4 replete R65.97′00
R65.98{8,24}2416 / 48 / 192 4,2 replete R65.9800
R65.98′{24,8}2448 / 16 / 192 2,4 replete R65.98′00
R65.99{8,24}2416 / 48 / 192 4,2 replete R65.9900
R65.99′{24,8}2448 / 16 / 192 2,4 replete R65.99′00
R65.110{8,88}444 / 44 / 176 44,4 replete R65.11000
R65.110′{88,8}4444 / 4 / 176 4,44 replete R65.110′00
R65.111{8,88}444 / 44 / 176 44,4 replete R65.11100
R65.111′{88,8}4444 / 4 / 176 4,44 replete R65.111′00
C65.18{14,21}1216 / 24 / 168 3,1 replete Chiral C65.1800
C65.18′{21,14}1224 / 16 / 168 1,3 replete Chiral C65.18′00
R65.126{12,28}8412 / 28 / 168 14,6 replete R65.12600
R65.126′{28,12}8428 / 12 / 168 6,14 replete R65.126′00
R65.128{20,20}416 / 16 / 160 4,4 replete R65.12800
R65.129{20,20}816 / 16 / 160 4,4 replete R65.12900
R65.130{20,20}416 / 16 / 160 4,4 replete R65.13000
R65.131{20,20}816 / 16 / 160 4,4 replete R65.13100
R65.132{20,20}816 / 16 / 160 5,5 replete R65.13200
R65.127{12,156}262 / 26 / 156 156,6 R65.12700
R65.127′{156,12}2626 / 2 / 156 6,156 R65.127′00
R65.135{36,36}48 / 8 / 144 12,12 replete R65.13500
R65.136{36,36}88 / 8 / 144 12,12 replete R65.13600
R65.137{36,36}48 / 8 / 144 9,9 replete R65.13700
R65.133{22,143}262 / 13 / 143 143,11 R65.13300
R65.133′{143,22}2613 / 2 / 143 11,143 R65.133′00
R65.134{28,140}102 / 10 / 140 140,14 R65.13400
R65.134′{140,28}1010 / 2 / 140 14,140 R65.134′00
R65.139{68,68}44 / 4 / 136 34,34θ° replete R65.13900
R65.138{54,135}102 / 5 / 135 135,27 R65.13800
R65.138′{135,54}105 / 2 / 135 27,135 R65.138′00
R65.141{132,132}22 / 2 / 132 132,132γ trivial Faces share vertices with themselves R65.14100
R65.140{131,262}21 / 2 / 131 262,131α trivial Faces share vertices with themselves Vertices share edges with themselves R65.14000
R65.140′{262,131}22 / 1 / 131 131,262α' trivial Faces share vertices with themselves Faces share edges with themselves R65.140′(see ser α')0
R65.142{260,260}21 / 1 / 130 260,260β trivial Faces share edges with themselves Faces share vertices with themselves Vertices share edges with themselves R65.14200

Other Regular Maps

General Index