R65.56

Statistics

genus c65, orientable
Schläfli formula c{6,6}
V / F / E c 128 / 128 / 384
notesreplete singular
vertex, face multiplicity c1, 1
Petrie polygons
96, each with 8 edges
rotational symmetry group768 elements.
full symmetry group1536 elements.
its presentation c< r, s, t | t2, (rs)2, (rt)2, (st)2, r6, s6, sr2s‑1r3s‑1r2sr‑1, sr‑1srs‑1r2s‑1rsr‑1s  >
C&D number cR65.56
The statistics marked c are from the published work of Professor Marston Conder.

Relations to other Regular Maps

It is self-dual.

List of regular maps in orientable genus 65.


Other Regular Maps

General Index