Regular hexagonal tilings of the torus have traditional subscripted labels with the format "(a,b)", with a≤b and a+b even. The number of hexagons in a tiling is (a2+3b2)/4.
A cleaner way of labelling the tilings uses labels with the format "(i,j)", with their order irrelevant. The number of hexagons
in a tiling is 2(i2+ij+j2). This labelling
system is based on Eisenstein integers, which reflect the sixfold symmetry of these tilings. To convert between the traditional and Eisenstein labels, use
i=(b-a)/2, j=(b+a)/2
and
a=abs(i-j), b=i+j.
Name | Schläfli | Eisenstein i,j |
V / F / E | mV, mF | notes | C&D no. | images |
---|---|---|---|---|---|---|---|
{6,3}(1,1) | {6,3}2 | 0,1 | 2 / 1 / 3 | 3,6 | α' δ ξ | R1.t1-1′ | 5 |
{6,3}(0,2) | {6,3}6 | 1,1 | 6 / 3 / 9 | 1,3 | ο ο° | R1.t0-2′ | 1 |
{6,3}(2,2) | {6,3}4 | 0,2 | 8 / 4 / 12 | 1,2 | ξ | R1.t2-2′ | 1 |
the Heawood map | {6,3}14 | 1,2 | 14 / 7 / 21 | 1,1 | C1.t1-3′ | 1 | |
{6,3}(3,3) | {6,3}6 | 0,3 | 18 / 9 / 27 | 1,1 | ξ ξ° | R1.t3-3′ | 1 |
{6,3}(0,4) | {6,3}12 | 2,2 | 24 / 12 / 36 | 1,1 | ο | R1.t0-4′ | 1 |
{6,3}(2,4) | {6,3}26 | 1,3 | 26 / 13 / 39 | 1,1 | C1.t2-4′ | 1 | |
{6,3}(4,4) | {6,3}8 | 0,4 | 32 / 16 / 48 | 1,1 | ξ | R1.t4-4′ | 1 |
{6,3}(1,5) | {6,3}38 | 2,3 | 38 / 19 / 57 | 1,1 | C1.t1-5′ | 1 | |
{6,3}(3,5) | {6,3}42 | 1,4 | 42 / 21 / 63 | 1,1 | C1.t3-5′ | 1 | |
{6,3}(5,5) | {6,3}10 | 0,5 | 50 / 25 / 75 | 1,1 | ξ | R1.t5-5′ | 1 |
{6,3}(0,6) | {6,3}18 | 3,3 | 54 / 27 / 81 | 1,1 | ο | R1.t0-6′ | 1 |
{6,3}(2,6) | {6,3}28 | 2,4 | 56 / 28 / 84 | 1,1 | C1.t2-6′ | 1 | |
{6,3}(4,6) | {6,3}62 | 1,5 | 62 / 31 / 93 | 1,1 | C1.t4-6′ | 1 | |
{6,3}(6,6) | {6,3}12 | 0,6 | 72 / 36 / 108 | 1,1 | ξ | R1.t6-6′ | 1 |
{6,3}(1,7) | {6,3}74 | 3,4 | 74 / 37 / 111 | 1,1 | C1.t1-7′ | 1 | |
{6,3}(3,7) | {6,3}78 | 2,5 | 78 / 39 / 117 | 1,1 | C1.t3-7′ | 1 | |
{6,3}(5,7) | {6,3}86 | 1,6 | 86 / 43 / 129 | 1,1 | C1.t5-7′ | 1 | |
{6,3}(0,8) | {6,3}24 | 4,4 | 96 / 48 / 144 | 1,1 | ο | R1.t0-8′ | 1 |
{6,3}(7,7) | {6,3}14 | 0,7 | 98 / 49 / 147 | 1,1 | ξ | R1.t7-7′ | 1 |
{6,3}(2,8) | {6,3}98 | 3,5 | 98 / 49 / 147 | 1,1 | C1.t2-8′ | 1 | |
{6,3}(8,8) | {6,3}16 | 0,8 | 128 / 64 / 192 | 1,1 | ξ | R1.t8-8′ | 0 |
{6,3}(0,10) | {6,3}30 | 5,5 | 150 / 75 / 225 | 1,1 | ο | R1.t0-10′ | 0 |
{6,3}(9,9) | {6,3}18 | 0,9 | 162 / 81 / 243 | 1,1 | ξ | R1.t9-9′ | 0 |
{6,3}(10,10) | {6,3}20 | 0,10 | 200 / 100 / 300 | 1,1 | ξ | R1.t10-10′ | 0 |
{6,3}(0,12) | {6,3}36 | 6,6 | 216 / 108 / 324 | 1,1 | ο | R1.t0-12′ | 0 |
{6,3}(11,11) | {6,3}22 | 0,11 | 242 / 121 / 363 | 1,1 | ξ | R1.t11-11′ | 0 |
{6,3}(12,12) | {6,3}24 | 0,12 | 288 / 144 / 432 | 1,1 | ξ | R1.t12-12′ | 0 |
{6,3}(0,14) | {6,3}42 | 7,7 | 294 / 147 / 441 | 1,1 | ο | R1.t0-14′ | 0 |
{6,3}(13,13) | {6,3}26 | 0,13 | 338 / 169 / 507 | 1,1 | ξ | R1.t13-13′ | 0 |
{6,3}(0,16) | {6,3}48 | 8,8 | 384 / 192 / 576 | 1,1 | ο | R1.t0-16′ | 0 |
{6,3}(14,14) | {6,3}28 | 0,14 | 392 / 196 / 588 | 1,1 | ξ | R1.t14-14′ | 0 |
{6,3}(15,15) | {6,3}30 | 0,15 | 450 / 225 / 675 | 1,1 | ξ | R1.t15-15′ | 0 |
{6,3}(0,18) | {6,3}54 | 9,9 | 486 / 243 / 739 | 1,1 | ο | R1.t0-18′ | 0 |
{6,3}(16,16) | {6,3}32 | 0,16 | 512 / 256 / 768 | 1,1 | ξ | R1.t16-16′ | 0 |
{6,3}(17,17) | {6,3}34 | 0,17 | 578 / 289 / 867 | 1,1 | ξ | R1.t17-17′ | 0 |
{6,3}(0,20) | {6,3} | 10,10 | 600 / 300 / 900 | 1,1 | ο | R1.t0-20′ | 0 |
{6,3}(18,18) | {6,3}36 | 0,18 | 648 / 324 / 972 | 1,1 | ξ | R1.t18-18′ | 0 |
A {6,3} with Eisenstein values i, j has Petrie polygons with 2(ii+ij+jj) / gcd(i, j) edges.
There are separate pages for other regular maps of genus 1 showing squares only and triangles only.
Orientable | |
Non-orientable |