Regular triangular tilings of the torus have traditional subscripted labels with the format "(a,b)", with a≤b and a+b even. The number of triangles in a tiling is (a2+3b2)/2.
A cleaner way of labelling the tilings uses labels with the format "(i,j)", with their order irrelevant. The number of triangles
in a tiling is 2(i2+ij+j2). This labelling
system is based on Eisenstein integers, which reflect the sixfold symmetry of these tilings. To convert between the traditional and Eisenstein labels, use
i=(b-a)/2, j=(b+a)/2
and
a=abs(i-j), b=i+j.
Name | Schläfli | Eisenstein i,j |
V / F / E | mV, mF | notes | C&D no. | images |
---|---|---|---|---|---|---|---|
{3,6}(1,1) | {3,6}2 | 0,1 | 1 / 2 / 3 | 6,3 | α δ' ξ' | R1.t1-1 | 2 |
{3,6}(0,2) | {3,6}6 | 1,1 | 3 / 6 / 9 | 3,1 | ο' ο°' | R1.t0-2 | 3 |
{3,6}(2,2) | {3,6}4 | 0,2 | 4 / 8 / 12 | 2,1 | ξ' | R1.t2-2 | 1 |
the dual Heawood map | {3,6}14 | 1,2 | 7 / 14 / 21 | 1,1 | C1.t1-3 | 1 | |
{3,6}(3,3) | {3,6}6 | 0,3 | 9 / 18 / 27 | 1,1 | ξ' ξ°' | R1.t3-3 | 1 |
{3,6}(0,4) | {3,6}12 | 2,2 | 12 / 24 / 36 | 1,1 | ο' | R1.t0-4 | 1 |
{3,6}(2,4) | {3,6}26 | 1,3 | 13 / 26 / 39 | 1,1 | C1.t2-4 | 1 | |
{3,6}(4,4) | {3,6}8 | 0,4 | 16 / 32 / 48 | 1,1 | ξ' | R1.t4-4 | 1 |
{3,6}(1,5) | {3,6}38 | 2,3 | 19 / 38 / 57 | 1,1 | C1.t1-5 | 1 | |
{3,6}(3,5) | {3,6}42 | 1,4 | 21 / 42 / 63 | 1,1 | C1.t3-5 | 1 | |
{3,6}(5,5) | {3,6}10 | 0,5 | 25 / 50 / 75 | 1,1 | ξ' | R1.t5-5 | 1 |
{3,6}(0,6) | {3,6}18 | 3,3 | 27 / 54 / 81 | 1,1 | ο' | R1.t0-6 | 1 |
{3,6}(2,6) | {3,6}28 | 2,4 | 28 / 56 / 84 | 1,1 | C1.t2-6 | 1 | |
{3,6}(4,6) | {3,6}62 | 1,5 | 31 / 62 / 93 | 1,1 | C1.t4-6 | 1 | |
{3,6}(6,6) | {3,6}12 | 0,6 | 36 / 72 / 108 | 1,1 | ξ' | R1.t6-6 | 1 |
{3,6}(1,7) | {3,6}74 | 3,4 | 37 / 74 / 111 | 1,1 | C1.t1-7 | 1 | |
{3,6}(3,7) | {3,6}78 | 2,5 | 39 / 78 / 117 | 1,1 | C1.t3-7 | 1 | |
{3,6}(5,7) | {3,6}86 | 1,6 | 43 / 86 / 129 | 1,1 | C1.t5-7 | 1 | |
{3,6}(0,8) | {3,6}24 | 4,4 | 48 / 96 / 144 | 1,1 | ο' | R1.t0-8 | 1 |
{3,6}(7,7) | {3,6}14 | 0,7 | 49 / 98 / 147 | 1,1 | ξ' | R1.t7-7 | 1 |
{3,6}(2,8) | {3,6}98 | 3,5 | 49 / 98 / 147 | 1,1 | C1.t2-8 | 1 | |
{3,6}(8,8) | {3,6}16 | 0,8 | 64 / 128 / 192 | 1,1 | ξ' | R1.t8-8 | (see ser ξ') |
{3,6}(0,10) | {3,6}30 | 5,5 | 75 / 150 / 225 | 1,1 | ο' | R1.t0-10 | (see ser ο') |
{3,6}(9,9) | {3,6}18 | 0,9 | 81 / 162 / 243 | 1,1 | ξ' | R1.t9-9 | (see ser ξ') |
{3,6}(10,10) | {3,6}20 | 0,10 | 100 / 200 / 300 | 1,1 | ξ' | R1.t10-10 | (see ser ξ') |
{3,6}(0,12) | {3,6}36 | 6,6 | 108 / 216 / 324 | 1,1 | ο' | R1.t0-12 | (see ser ο') |
{3,6}(11,11) | {3,6}22 | 0,11 | 121 / 242 / 363 | 1,1 | ξ' | R1.t11-11 | (see ser ξ') |
{3,6}(12,12) | {3,6}24 | 0,12 | 144 / 288 / 432 | 1,1 | ξ' | R1.t12-12 | (see ser ξ') |
{3,6}(0,14) | {3,6}42 | 7,7 | 147 / 294 / 441 | 1,1 | ο' | R1.t0-14 | (see ser ο') |
{3,6}(13,13) | {3,6}26 | 0,13 | 169 / 338 / 507 | 1,1 | ξ' | R1.t13-13 | (see ser ξ') |
{3,6}(0,16) | {3,6}48 | 8,8 | 192 / 384 / 576 | 1,1 | ο' | R1.t0-16 | (see ser ο') |
{3,6}(14,14) | {3,6}28 | 0,14 | 196 / 392 / 588 | 1,1 | ξ' | R1.t14-14 | (see ser ξ') |
{3,6}(15,15) | {3,6}30 | 0,15 | 225 / 450 / 675 | 1,1 | ξ' | R1.t15-15 | (see ser ξ') |
{3,6}(0,18) | {3,6} | 9,9 | 243 / 486 / 739 | 1,1 | ο' | R1.t0-18 | (see ser ο') |
{3,6}(16,16) | {3,6}32 | 0,16 | 256 / 512 / 768 | 1,1 | ξ' | R1.t16-16 | (see ser ξ') |
{3,6}(17,17) | {3,6}34 | 0,17 | 289 / 578 / 867 | 1,1 | ξ' | R1.t17-17 | (see ser ξ') |
{3,6}(0,20) | {3,6}60 | 10,10 | 300 / 600 / 900 | 1,1 | ο' | R1.t0-20 | (see ser ο') |
{3,6}(18-18) | {3,6}36 | 0,0 | 324 / 648 / 972 | 1,1 | ξ' | R1.t18-18 | (see ser ξ') |
A {3,6} with Eisenstein values i, j has Petrie polygons with 2(ii+ij+jj) / gcd(i, j) edges.
There are separate pages for other regular maps of genus 1 showing squares only hexagons only.
Orientable | |
Non-orientable |