|
genus c | 1, orientable |
Schläfli formula c | {3,6} |
V / F / E c | 9 / 18 / 27 |
notes | |
vertex, face multiplicity c | 1, 1 |
9, each with 6 edges 9, each with 6 edges 9, each with 6 edges 18, each with 3 edges 9, each with 6 edges | |
antipodal sets | 9 of ( v, h2 ) |
rotational symmetry group | (C3×C3)⋊C6, with 54 elements |
full symmetry group | 108 elements. |
C&D number c | R1.t3-3 |
The statistics marked c are from the published work of Professor Marston Conder. |
Its dual is
Its Petrie dual is
It can be 3-fold covered to give
It is a 3-fold cover of
It can be 2-split to give
It can be rectified to give
It can be truncated to give
List of regular maps in orientable genus 1.
Its skeleton is K3,3,3.
Orientable | |
Non-orientable |
The image on this page is copyright © 2010 N. Wedd