|
genus c | 1, orientable |
Schläfli formula c | {6,3} |
V / F / E c | 8 / 4 / 12 |
notes | |
vertex, face multiplicity c | 1, 2 |
6, each with 4 edges | |
rotational symmetry group | A4×C2, with 24 elements |
full symmetry group | S4×C2, with 48 elements |
C&D number c | R1.t2-2′ |
The statistics marked c are from the published work of Professor Marston Conder. |
Its dual is
Its Petrie dual is
It can be 3-fold covered to give
It can be built by 2-splitting
It can be rectified to give
List of regular maps in orientable genus 1.
Its skeleton is cubic graph.
S4 |
A4×C2 |
Orientable | |
Non-orientable |
The images on this page are copyright © 2010 N. Wedd