N50.3

Statistics

genus c50, non-orientable
Schläfli formula c{4,5}
V / F / E c 192 / 240 / 480
notesreplete singular
vertex, face multiplicity c1, 1
Petrie polygons
80, each with 12 edges
rotational symmetry group1920 elements.
full symmetry group1920 elements.
its presentation c< r, s, t | t2, r4, (rs)2, (rt)2, (st)2, s‑5, (rs‑1)6, s2r‑1srs‑1rs‑1r‑2s‑1rs‑1rsr‑1strsr‑1  >
C&D number cN50.3
The statistics marked c are from the published work of Professor Marston Conder.

Relations to other Regular Maps

Its dual is N50.3′.

List of regular maps in non-orientable genus 50.


Other Regular Maps

General Index