R101.43

Statistics

genus c101, orientable
Schläfli formula c{20,20}
V / F / E c 25 / 25 / 250
notesreplete
vertex, face multiplicity c5, 5
Petrie polygons
50, each with 10 edges
rotational symmetry group500 elements.
full symmetry group1000 elements.
its presentation c< r, s, t | t2, (rs)2, (rt)2, (st)2, s‑1r4s‑3, (s‑1r)5  >
C&D number cR101.43
The statistics marked c are from the published work of Professor Marston Conder.

Relations to other Regular Maps

It is self-dual.

List of regular maps in orientable genus 101.


Other Regular Maps

General Index