
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
![]() |
genus c | 2, orientable |
Schläfli formula c | {4,6} |
V / F / E c | 4 / 6 / 12 |
notes | ![]() ![]() ![]() |
vertex, face multiplicity c | 3, 2 |
2, each with 12 edges 12, each with 2 edges 4, each with 6 edges 6, each with 4 edges 6, each with 4 edges | |
antipodal sets | 2 of ( 2v ), 3 of ( 2f ), 6 of ( 2e ) |
rotational symmetry group | C3 ⋊ D8, with 24 elements |
full symmetry group | 48 elements. |
its presentation c | < r, s, t | t2, r4, (rs)2, (rs‑1)2, (rt)2, (st)2, s6 > |
C&D number c | R2.2 |
The statistics marked c are from the published work of Professor Marston Conder. |
Its Petrie dual is
It can be 2-fold covered to give
It can be 3-split to give
It can be 5-split to give
It can be 7-split to give
It can be 9-split to give
It can be 11-split to give
It can be rectified to give
It is a member of series ε'°' .
It is a member of series ζ .
List of regular maps in orientable genus 2.
× | w09:6 | |||
× | ||||
× |
Its skeleton is 3 . 4-cycle.
Orientable | |
Non-orientable |
The images on this page are copyright © 2010 N. Wedd