R45.26′

Statistics

genus c45, orientable
Schläfli formula c{20,12}
V / F / E c 20 / 12 / 120
notesreplete
vertex, face multiplicity c4, 4
Petrie polygons
24, each with 10 edges
rotational symmetry group240 elements.
full symmetry group480 elements.
its presentation c< r, s, t | t2, (sr)2, (st)2, (rt)2, rs4rs‑2, r‑2s3r‑3, sr‑1sr‑1s2r2s‑1r‑1  >
C&D number cR45.26′
The statistics marked c are from the published work of Professor Marston Conder.

Relations to other Regular Maps

Its dual is R45.26.

List of regular maps in orientable genus 45.


Other Regular Maps

General Index