R52.3′

Statistics

genus c52, orientable
Schläfli formula c{106,4}
V / F / E c 106 / 4 / 212
notesreplete
vertex, face multiplicity c2, 53
Petrie polygons
2, each with 212 edges
rotational symmetry group424 elements.
full symmetry group848 elements.
its presentation c< r, s, t | t2, s4, (sr)2, (sr‑1)2, (st)2, (rt)2, r106  >
C&D number cR52.3′
The statistics marked c are from the published work of Professor Marston Conder.

Relations to other Regular Maps

Its dual is R52.3.

Its Petrie dual is R53.5′.

It is a member of series ΞΆ'.

List of regular maps in orientable genus 52.


Other Regular Maps

General Index