N106.4

Statistics

genus c106, non-orientable
Schläfli formula c{3,14}
V / F / E c 78 / 364 / 546
notesreplete
vertex, face multiplicity c2, 1
Petrie polygons
84, each with 13 edges
rotational symmetry group2184 elements.
full symmetry group2184 elements.
its presentation c< r, s, t | t2, r‑3, (rs)2, (rt)2, (st)2, (rs‑6)2, sr‑1s2r‑1s2r‑1s2rs‑1rs‑2rs‑2rts, s‑2r‑1s2rs‑2r‑1s2rs‑1rs‑3rsts‑1rs‑1  >
C&D number cN106.4
The statistics marked c are from the published work of Professor Marston Conder.

Relations to other Regular Maps

Its dual is N106.4′.

List of regular maps in non-orientable genus 106.


Other Regular Maps

General Index