N200.13′

Statistics

genus c200, non-orientable
Schläfli formula c{10,8}
V / F / E c 90 / 72 / 360
notesreplete singular
vertex, face multiplicity c1, 1
Petrie polygons
180, each with 4 edges
rotational symmetry group1440 elements.
full symmetry group1440 elements.
its presentation c< r, s, t | t2, (sr)2, (st)2, (rt)2, s8, r‑1s‑1rs2rs‑1r‑1, r10, r‑1s‑2rs3rs‑2r‑1s, (sr‑1)6, (sr‑2)4, sr‑1s3r‑1s‑4rs‑2t, r‑2s‑3r2s‑3r3t  >
C&D number cN200.13′
The statistics marked c are from the published work of Professor Marston Conder.

Relations to other Regular Maps

Its dual is N200.13.

List of regular maps in non-orientable genus 200.


Other Regular Maps

General Index