There are separate pages for regular maps in the torus showing:
Name | Schläfli | V / F / E | mV, mF | notes | C&D no. | images | wire- frames |
---|---|---|---|---|---|---|---|
{4,4}(1,0) | {4,4}2 | 1 / 1 / 2 | 4,4 | β° κ° | R1.s1-0 | 1 | 2 |
{6,3}(1,1) | {6,3}2 | 2 / 1 / 3 | 3,6 | α' δ ξ | R1.t1-1′ | 5 | 0 |
{3,6}(1,1) | {3,6}2 | 1 / 2 / 3 | 6,3 | α δ' ξ' | R1.t1-1 | 2 | 0 |
{4,4}(1,1) | {4,4}2 | 2 / 2 / 4 | 4,4 | γ° ζ'° ζ'°' μ° | R1.s1-1 | 6 | 7 |
{4,4}(2,0) | {4,4}4 | 4 / 4 / 8 | 2,2 | θ θ' θ° λ λ' λ° | R1.s2-0 | 4 | 8 |
{6,3}(0,2) | {6,3}6 | 6 / 3 / 9 | 1,3 | ο ο° | R1.t0-2′ | 1 | 0 |
{3,6}(0,2) | {3,6}6 | 3 / 6 / 9 | 3,1 | ο' ο°' | R1.t0-2 | 3 | 0 |
{4,4}(2,1) | {4,4}10 | 5 / 5 / 10 | 1,1 | C1.s2-1 | 1 | 0 | |
{6,3}(2,2) | {6,3}4 | 8 / 4 / 12 | 1,2 | ξ | R1.t2-2′ | 1 | 0 |
{3,6}(2,2) | {3,6}4 | 4 / 8 / 12 | 2,1 | ξ' | R1.t2-2 | 1 | 0 |
{4,4}(2,2) | {4,4}4 | 8 / 8 / 16 | 1,1 | μ μ' μ° | R1.s2-2 | 2 | 2 |
{4,4}(3,0) | {4,4}6 | 9 / 9 / 18 | 1,1 | κ° | R1.s3-0 | 1 | 0 |
{4,4}(3,1) | {4,4}10 | 10 / 10 / 20 | 1,1 | C1.s3-1 | 2 | 0 | |
the Heawood map | {6,3}14 | 14 / 7 / 21 | 1,1 | C1.t1-3′ | 1 | 0 | |
the dual Heawood map | {3,6}14 | 7 / 14 / 21 | 1,1 | C1.t1-3 | 1 | 0 | |
{4,4}(3,2) | {4,4}26 | 13 / 13 / 26 | 1,1 | C1.s3-2 | 1 | 0 | |
{6,3}(3,3) | {6,3}6 | 18 / 9 / 27 | 1,1 | ξ ξ° | R1.t3-3′ | 1 | 0 |
{3,6}(3,3) | {3,6}6 | 9 / 18 / 27 | 1,1 | ξ' ξ°' | R1.t3-3 | 1 | 0 |
{4,4}(4,0) | {4,4}8 | 16 / 16 / 32 | 1,1 | λ° | R1.s4-0 | 1 | 0 |
{4,4}(4,1) | {4,4}34 | 17 / 17 / 34 | 1,1 | C1.s4-1 | 1 | 0 |
Orientable | |
Non-orientable |